The important parameters to describe waves are their amplitude and length.In order to make it easier to improve wave amplitude and facilitate wave experiment,a simple push-type wave generating method using digital rot...The important parameters to describe waves are their amplitude and length.In order to make it easier to improve wave amplitude and facilitate wave experiment,a simple push-type wave generating method using digital rotary valve control was proposed and different wave amplitudes were generated by the new method.After the mathematical model of the new method had been established,numerical analysis based on the linear wave theory was carried out by means of Matlab/Simulink software tools,and experiments were conducted on the push-type wave maker to ascertain the validity of the established model and the numerical simulation results.It shows that both experimental and theoretical results agree relatively well,and the plate motion frequency and amplitude of the push-type wave maker can be continuously adjusted and the various required regular waves can be obtained.Although the wave amplitude and length descends with the increasing of working frequency,the wave amplitude can be improved conveniently by setting the axial opening width of the valve and the oil supply pressure of system.The wave length remains unchanged with the axial opening width and the oil supply pressure change.The research indicates that different regular waves can be easily generated by the new method and the wave amplitude can be further improved in a certain plate motion frequency range.展开更多
To satisfy the demands of higher frequency and amplitude in hydraulic vibration experiment system,the two-stage excitation valve is presented,and a mathematical model of two-stage excitation valve is established after...To satisfy the demands of higher frequency and amplitude in hydraulic vibration experiment system,the two-stage excitation valve is presented,and a mathematical model of two-stage excitation valve is established after analyzing the working principle of two-stage excitation valve,then the influence of relevant parameters on the displacement of main spool of two-stage excitation valve is studied by using Matlab/Simulink to calculate and analyze.The results show that the displacement of main spool will be smaller with bigger diameter and more secondary valve ports.When the reversing frequency is higher and the oil supply pressure is lower as well as the axial guide width of valve ports is smaller,the maximum displacement of main spool is smaller.The new two-stage excitation valve is easy to adjust reversing frequency and flow.The high frequency can be achieved by improving the rotation speed of servo motor and adding the number of secondary valve ports;the large flow can be realized by increasing the axial guide width of secondary valve ports and oil supply pressure.The result of this study is of guiding significance for designing the rotary valve for the achievement of higher reversing frequency and larger flow.展开更多
The torque-angle characteristics of electric-mechanical converters are important determinants of the quality of electrohydraulic proportional control systems.It is far more difficult for a rotary electric-mechanical c...The torque-angle characteristics of electric-mechanical converters are important determinants of the quality of electrohydraulic proportional control systems.It is far more difficult for a rotary electric-mechanical converter(REMC)to obtain flat torque-angle characteristics than traditional proportional solenoid,greatly influencing the promotion and application of rotary valves for electrohydraulic proportional control systems.A simple and feasible regulation method for the torque-angle characteristics of REMCs based on a hybrid air gap is proposed.The regulation is performed by paralleling an additional axial air gap with the original radial air gap to obtain a flat torque-angle characteristic and increase output torque.For comparison,prototypes of REMCs based on hybrid and radial air gaps were manufactured,and a special test rig was built.The torque-angle characteristics under different excitation currents and step responses were studied by magnetic circuit analysis,finite element simulation,and experimental research.The experimental results were consistent with the theoretical analysis.It was shown that REMCs based on a hybrid air gap can obtain a flat torque-angle characteristic with further optimizing of key structural parameters and also increase output torque.This regulation method provides a new approach for the design of proportional rotary electromechanical converters.展开更多
Rotary pneumatic actuators that are made out of linear one are always best suited for exoskeleton joint actuation due to its inherent power to weight ratio. This work is a modified version of knee actuation system tha...Rotary pneumatic actuators that are made out of linear one are always best suited for exoskeleton joint actuation due to its inherent power to weight ratio. This work is a modified version of knee actuation system that has already been developed and major modifications are made in order to make it more suitable for human wearing and also to reduce its bulkiness and complexity. The considered actuator system is a rotary actuator where a pulley converts the linear motion of the standard pneumatic piston into the rotary motion. To prove the capability of the actuator, its performance characteristics such as torque and power produced are compared to the required torque and power at the knee joint of the exoskeleton in swing phase and are found to be excellent. The two-way analysis of variance(ANOVA)is performed to find the effect of the throat area valve on knee angle. The ANOVA shows the significant effect of the throat area variation on the knee angle flexion made by the proposed actuator. A relationship between the throat area of flow control valve, that is connected to the exit port of the direction control valve, and angular displacement of the knee joint has been formulated. This relationship can be used to design a control system to regulate the mass flow rate of air at the exit and hence the angular velocity of the knee joint can be controlled.展开更多
Hydraulic power steering gear supplies assistant power by liquid stream. The stream will be changed greatly for the flow field formed by the rotary valve will vary during steering. And the change of the stream in this...Hydraulic power steering gear supplies assistant power by liquid stream. The stream will be changed greatly for the flow field formed by the rotary valve will vary during steering. And the change of the stream in this narrow field will (be big enough to) cause the fluctuation of the assistance power and noise of the steering gear. 3-D meshes of the flow field between the sleeve and the rotor of the valve with different structure parameters such as entry caliber and groove depth were set up and a general CFD code-Fluent was used to analyze the stream performance. The results including pressure and gas-phase's volume fraction were analyzed under certain operation flow rate. It was found that the entry caliber did not affect the operation pressure of the valve under the same flow rate but affected the gas-phase's volume fraction of the flow field, and so did the groove depth of the valve' sleeve and rotor. Many researches have pointed that the noise of steering valve is almost cavitation noise, that is, the gas-phase in the flow field has great correlation with rotary valve noise. Based on these analyses of the stream in the rotary steering valve, this paper gave suggestion that increasing entry caliber of the rotary valve and choosing appropriate groove depth will reduce the valve noise.展开更多
A rotary valve coupled in a combustor assembly can generate periodic pressure oscillations inside the combustor and can be used to study the combustion instability in the combustion chamber of a rocket engine.This pap...A rotary valve coupled in a combustor assembly can generate periodic pressure oscillations inside the combustor and can be used to study the combustion instability in the combustion chamber of a rocket engine.This paper proposes a cold gas flow experimental system based on a rotary valve and a corresponding rotation model.A 3 D numerical model is proposed to obtain the transient flow inside the rotary valve,and the dynamic mesh technique and User-Defined Functions(UDFs)are adopted to implement a swing motion instead of a rotary motion.Several cold gas flow experiments are carried out at rotating speeds of 75225,and 375 rpm to verify the validity of the numerical model.The effects of rotating speed,stroke length ratio and radius of the RED(Rotor Exhaust Duct)on the pressure oscillations are studied using this numerical model.The results show that the maximum and peak-to-peak values of the pressure oscillations gradually decrease with increasing rotating speed.The ratio of the corresponding peak-to-peak value to the maximum pressure(pressure amplitude ratio)is reduced from 1.81 to 0.6%.The stroke length ratio affects the pressure waveform because it leads to a change in the time spent in the non-exhaust stage.When the stroke length ratio is 0,the waveform closely resembles a sine wave.With the increase in the stroke length ratio,the pressure waveform exhibits a more square or a triangular wave shape.Finally,a high-frequency and high-amplitude pressure oscillation can be obtained by appropriately increasing the radius of the RED.展开更多
This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.Th...This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.The simulated heat source temperature(SHST)in this work was set from 39.51°C to 48.60°C by the simulated heat source module.The influence of load percentage of simulated heat source(LPSHS)between 50%and 70%,the rotary valve opening(RVO)between 20%and 100%,the resistive load between 36Ωand 180Ωor the no-load of the generator,as well as the autumn and winter ambient temperature on the system performance were studied.The results showed that the stability of the system was promoted when the generator had a resistive load.The power generation(PG)and generator speed(GS)of the system in autumn were better than in winter,but the expander pressure ratio(EPR)was lower than in winter.Keep RVO unchanged,the SHST,the mass flow rate(MFR)of the working medium,GS,and the PG of the system increased with the increasing of LPSHS for different generator resistance load values.When the RVO was 60%,LPSHS was 70%,the SHST was 44.15°C and the resistive load was 72Ω,the highest PG reached 15.11 W.Finally,a simulation formula was obtained for LPSHS,resistance load,and PG,and its correlation coefficient was between 0.9818 and 0.9901.The formula can accurately predict the PG.The experimental results showed that the standard deviation between the experimental and simulated values was below 0.0792,and the relative error was within±5%.展开更多
The pulse detonation rocket engine (PDRE) requires periodic supply of oxidizer, fuel and purge gas. A rotary-valve assembly is fabricated to control the periodic supply in this research. Oxygen and liquid aviation k...The pulse detonation rocket engine (PDRE) requires periodic supply of oxidizer, fuel and purge gas. A rotary-valve assembly is fabricated to control the periodic supply in this research. Oxygen and liquid aviation kerosene are used as oxidizer and fuel respectively. An ordinary automobile spark plug, with ignition energy as low as 50 mJ, is used to initiate combustion. Steady operation of the PDRE is achieved with operating frequency ranging from 1 Hz to 10 Hz. Experimentally measured pressure is lower than theoretical value by 13% at 1 Hz and 37% at 10 Hz, and there also exists a velocity deficit at different operating frequencies. Both of these two phenomena are believed mainly due to droplet size which depends on atomization and vaporiza-tion of liquid fuel.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51605431,51705456)Ningbo Municipal Natural Science Foundation of China(Grant No.2019A610162)Ningbo Major Scientific and Technological Projects(Grant No.2017C110005).
文摘The important parameters to describe waves are their amplitude and length.In order to make it easier to improve wave amplitude and facilitate wave experiment,a simple push-type wave generating method using digital rotary valve control was proposed and different wave amplitudes were generated by the new method.After the mathematical model of the new method had been established,numerical analysis based on the linear wave theory was carried out by means of Matlab/Simulink software tools,and experiments were conducted on the push-type wave maker to ascertain the validity of the established model and the numerical simulation results.It shows that both experimental and theoretical results agree relatively well,and the plate motion frequency and amplitude of the push-type wave maker can be continuously adjusted and the various required regular waves can be obtained.Although the wave amplitude and length descends with the increasing of working frequency,the wave amplitude can be improved conveniently by setting the axial opening width of the valve and the oil supply pressure of system.The wave length remains unchanged with the axial opening width and the oil supply pressure change.The research indicates that different regular waves can be easily generated by the new method and the wave amplitude can be further improved in a certain plate motion frequency range.
基金This work was supported by the Ningbo"Science and Technology Innovation 2025"major project(202002P2004)the Natural Science Foundation of Ningbo City of China(2019A610162)the National Natural Science Foundation of China(51605431).
文摘To satisfy the demands of higher frequency and amplitude in hydraulic vibration experiment system,the two-stage excitation valve is presented,and a mathematical model of two-stage excitation valve is established after analyzing the working principle of two-stage excitation valve,then the influence of relevant parameters on the displacement of main spool of two-stage excitation valve is studied by using Matlab/Simulink to calculate and analyze.The results show that the displacement of main spool will be smaller with bigger diameter and more secondary valve ports.When the reversing frequency is higher and the oil supply pressure is lower as well as the axial guide width of valve ports is smaller,the maximum displacement of main spool is smaller.The new two-stage excitation valve is easy to adjust reversing frequency and flow.The high frequency can be achieved by improving the rotation speed of servo motor and adding the number of secondary valve ports;the large flow can be realized by increasing the axial guide width of secondary valve ports and oil supply pressure.The result of this study is of guiding significance for designing the rotary valve for the achievement of higher reversing frequency and larger flow.
基金Supported by National Natural Science Foundation of China(Grant No.51975524).
文摘The torque-angle characteristics of electric-mechanical converters are important determinants of the quality of electrohydraulic proportional control systems.It is far more difficult for a rotary electric-mechanical converter(REMC)to obtain flat torque-angle characteristics than traditional proportional solenoid,greatly influencing the promotion and application of rotary valves for electrohydraulic proportional control systems.A simple and feasible regulation method for the torque-angle characteristics of REMCs based on a hybrid air gap is proposed.The regulation is performed by paralleling an additional axial air gap with the original radial air gap to obtain a flat torque-angle characteristic and increase output torque.For comparison,prototypes of REMCs based on hybrid and radial air gaps were manufactured,and a special test rig was built.The torque-angle characteristics under different excitation currents and step responses were studied by magnetic circuit analysis,finite element simulation,and experimental research.The experimental results were consistent with the theoretical analysis.It was shown that REMCs based on a hybrid air gap can obtain a flat torque-angle characteristic with further optimizing of key structural parameters and also increase output torque.This regulation method provides a new approach for the design of proportional rotary electromechanical converters.
基金supported by the Technical Education Quality Improvement Programme (TEQIP),India (NITC/TEQIP-II/R & d/2014)
文摘Rotary pneumatic actuators that are made out of linear one are always best suited for exoskeleton joint actuation due to its inherent power to weight ratio. This work is a modified version of knee actuation system that has already been developed and major modifications are made in order to make it more suitable for human wearing and also to reduce its bulkiness and complexity. The considered actuator system is a rotary actuator where a pulley converts the linear motion of the standard pneumatic piston into the rotary motion. To prove the capability of the actuator, its performance characteristics such as torque and power produced are compared to the required torque and power at the knee joint of the exoskeleton in swing phase and are found to be excellent. The two-way analysis of variance(ANOVA)is performed to find the effect of the throat area valve on knee angle. The ANOVA shows the significant effect of the throat area variation on the knee angle flexion made by the proposed actuator. A relationship between the throat area of flow control valve, that is connected to the exit port of the direction control valve, and angular displacement of the knee joint has been formulated. This relationship can be used to design a control system to regulate the mass flow rate of air at the exit and hence the angular velocity of the knee joint can be controlled.
文摘Hydraulic power steering gear supplies assistant power by liquid stream. The stream will be changed greatly for the flow field formed by the rotary valve will vary during steering. And the change of the stream in this narrow field will (be big enough to) cause the fluctuation of the assistance power and noise of the steering gear. 3-D meshes of the flow field between the sleeve and the rotor of the valve with different structure parameters such as entry caliber and groove depth were set up and a general CFD code-Fluent was used to analyze the stream performance. The results including pressure and gas-phase's volume fraction were analyzed under certain operation flow rate. It was found that the entry caliber did not affect the operation pressure of the valve under the same flow rate but affected the gas-phase's volume fraction of the flow field, and so did the groove depth of the valve' sleeve and rotor. Many researches have pointed that the noise of steering valve is almost cavitation noise, that is, the gas-phase in the flow field has great correlation with rotary valve noise. Based on these analyses of the stream in the rotary steering valve, this paper gave suggestion that increasing entry caliber of the rotary valve and choosing appropriate groove depth will reduce the valve noise.
基金supported by National Natural Science Foundation of China(No.11572042)。
文摘A rotary valve coupled in a combustor assembly can generate periodic pressure oscillations inside the combustor and can be used to study the combustion instability in the combustion chamber of a rocket engine.This paper proposes a cold gas flow experimental system based on a rotary valve and a corresponding rotation model.A 3 D numerical model is proposed to obtain the transient flow inside the rotary valve,and the dynamic mesh technique and User-Defined Functions(UDFs)are adopted to implement a swing motion instead of a rotary motion.Several cold gas flow experiments are carried out at rotating speeds of 75225,and 375 rpm to verify the validity of the numerical model.The effects of rotating speed,stroke length ratio and radius of the RED(Rotor Exhaust Duct)on the pressure oscillations are studied using this numerical model.The results show that the maximum and peak-to-peak values of the pressure oscillations gradually decrease with increasing rotating speed.The ratio of the corresponding peak-to-peak value to the maximum pressure(pressure amplitude ratio)is reduced from 1.81 to 0.6%.The stroke length ratio affects the pressure waveform because it leads to a change in the time spent in the non-exhaust stage.When the stroke length ratio is 0,the waveform closely resembles a sine wave.With the increase in the stroke length ratio,the pressure waveform exhibits a more square or a triangular wave shape.Finally,a high-frequency and high-amplitude pressure oscillation can be obtained by appropriately increasing the radius of the RED.
基金This work was supported by Tianjin Natural Science Foundation(No.21JCZDJC00750).
文摘This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.The simulated heat source temperature(SHST)in this work was set from 39.51°C to 48.60°C by the simulated heat source module.The influence of load percentage of simulated heat source(LPSHS)between 50%and 70%,the rotary valve opening(RVO)between 20%and 100%,the resistive load between 36Ωand 180Ωor the no-load of the generator,as well as the autumn and winter ambient temperature on the system performance were studied.The results showed that the stability of the system was promoted when the generator had a resistive load.The power generation(PG)and generator speed(GS)of the system in autumn were better than in winter,but the expander pressure ratio(EPR)was lower than in winter.Keep RVO unchanged,the SHST,the mass flow rate(MFR)of the working medium,GS,and the PG of the system increased with the increasing of LPSHS for different generator resistance load values.When the RVO was 60%,LPSHS was 70%,the SHST was 44.15°C and the resistive load was 72Ω,the highest PG reached 15.11 W.Finally,a simulation formula was obtained for LPSHS,resistance load,and PG,and its correlation coefficient was between 0.9818 and 0.9901.The formula can accurately predict the PG.The experimental results showed that the standard deviation between the experimental and simulated values was below 0.0792,and the relative error was within±5%.
基金National Natural Science Foundation of China (50976094)Doctoral Program Foundation of Education Ministry of China (20096102110022)+1 种基金Doctorate Foundation of Northwestern Polytechnical University (CX201112)Graduate Innovation Lab Center of Northwestern Polytechnical University (10006,10013)
文摘The pulse detonation rocket engine (PDRE) requires periodic supply of oxidizer, fuel and purge gas. A rotary-valve assembly is fabricated to control the periodic supply in this research. Oxygen and liquid aviation kerosene are used as oxidizer and fuel respectively. An ordinary automobile spark plug, with ignition energy as low as 50 mJ, is used to initiate combustion. Steady operation of the PDRE is achieved with operating frequency ranging from 1 Hz to 10 Hz. Experimentally measured pressure is lower than theoretical value by 13% at 1 Hz and 37% at 10 Hz, and there also exists a velocity deficit at different operating frequencies. Both of these two phenomena are believed mainly due to droplet size which depends on atomization and vaporiza-tion of liquid fuel.