The rotary motion deblurring is an inevitable procedure when the imaging seeker is mounted in the rotating missiles.Traditional rotary motion deblurring methods suffer from ringing artifacts and noise,especially for l...The rotary motion deblurring is an inevitable procedure when the imaging seeker is mounted in the rotating missiles.Traditional rotary motion deblurring methods suffer from ringing artifacts and noise,especially for large blur extents.To solve the above problems,we propose a progressive rotary motion deblurring framework consisting of a coarse deblurring stage and a refinement stage.In the first stage,we design an adaptive blur extents factor(BE factor)to balance noise suppression and details reconstruction.And a novel deconvolution model is proposed based on BE factor.In the second stage,a triplescale deformable module CNN(TDM-CNN)is designed to reduce the ringing artifacts,which can exploit the 2D information of an image and adaptively adjust spatial sampling locations.To establish a standard evaluation benchmark,a real-world rotary motion blur dataset is proposed and released,which includes rotary blurred images and corresponding ground truth images with different blur angles.Experimental results demonstrate that the proposed method outperforms the state-of-the-art models on synthetic and real-world rotary motion blur datasets.The code and dataset are available at https://github.com/JinhuiQin/RotaryDeblurring.展开更多
The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Des...The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Despite the implementation of various control strategies to maintain equilibrium,optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive.Existing methods frequently rely on extensive experimental data or the designer’s expertise,presenting a notable drawback.This paper proposes a novel tracking control approach for RIP,utilizing a Linear Quadratic Regulator(LQR)in combination with a reduced-order observer.Initially,the RIP system is mathematically modeled using the Newton-Euler-Lagrange method.Subsequently,a composite controller is devised that integrates an LQR for generating nominal control signals and a reduced-order observer for reconstructing unmeasured states.This approach enhances the controller’s robustness by eliminating differential terms from the observer,thereby attenuating unknown disturbances.Thorough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance below50Hz and achieve precise tracking below1.4 rad,validating the effectiveness of the proposed control scheme.展开更多
The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the...The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.展开更多
A CO2 laser die-cutting system, which does not need die board any more, is a new technique for manufac-turing packing box. Two optical paths, the galvanometer scanning system and the flying optical system, are used to...A CO2 laser die-cutting system, which does not need die board any more, is a new technique for manufac-turing packing box. Two optical paths, the galvanometer scanning system and the flying optical system, are used to satisfy different processing needs. The scanning system is composed of galvanometer scanning mirrors and F-θ lens. And the flying optical system is driven by two servo motors. This paper presents the software and hardware design of the laser die-cutting system, the difference between the two optical paths, as well as the relationship among the cutting speed, thickness of wrapping paper and laser power. The cutting speed and thickness of wrapping paper are linearly increased by the incremental laser power, while the cutting speed is hyperbolically decreased by the incremental thickness of wrapping paper when the laser power is constant. The amount of incision is reduced by 20% and the processing time by 40% when tested by a low power RF CO2 laser die-cutting system using the optimized program. This tech- nique is also used for the reference of other rapid laser processing systems.展开更多
Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from...Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from two adjacent vertical drillholes that were formed with the same hydraulic rotary drilling machine and bit.The analysis of original factual data is presented to obtain the constant drilling speed during net drilling process.According to the factual data along two adjacent drillholes,the digitalization results respectively include 461 linear zones and 210 linear zones with their constant drilling speeds and associated drilling parameters.The digitalization results can accurately present the spatial distributions and interface boundaries of drilled geomaterials and the results are consistent with the paralleled site loggings.The weighted average drilling speeds from 2.335 m/min to 0.044 m/min represent 13 types of drilled geomaterials from soils to hard rocks.The quantitative relation between drilling speed and strength property is provided.The digitalization results can statistically profile the basic strength quality grades of III to VI from soils to hard rocks.The thickness distributions of four strength quality grades are presented for each individual type of geomaterials along two drillholes.In total,50.2%of geomaterials from drillhole A are grade IV and 57.4%of geomaterials from drillhole B are grade III.The digitalization results can offer an accurate and cost-effective tool to quantitatively describe the spatial distribution and in situ strength profile of drilled geomaterials in the current drilling projects.展开更多
To satisfy the requirements for the precise formation of large-scale high-performance lightweight components with inner ring reinforcement, a new multidirectional loading rotary extrusion forming technology is develop...To satisfy the requirements for the precise formation of large-scale high-performance lightweight components with inner ring reinforcement, a new multidirectional loading rotary extrusion forming technology is developed to match the linear motion with the rotary motion and actively increases the strong shear force. Its principle is that the radial force and rotating torque increase when the blank is axially extruded and loaded. Through the synergistic action of axial, radial, and rotating motions, the orderly fow of metal is controlled, and the cumulative severe plastic deformation (SPD) of an“uplift-trowel” micro-area is generated. Consequently, materials are uniformly strengthened and toughened. Simultaneously, through the continuous deformation of a punch “ellipse-circle,” a high reinforcement component is grown on the cylinder wall to achieve the high-quality formation of cylindrical parts or the inner-ring-reinforcement components. Additionally, the efective strain increases with rotation speed, and the maximum intensity on the basal plane decreases as the number of revolutions increase. The punch structure also afects the axial extrusion loading and equivalent plastic strain. Thus, the proposed technology enriches the plastic forming theory and widens the application feld of plastic forming. Furthermore, the formed large-scale high-performance inner-ring-stifened magnesium components have been successfully verifed in aerospace equipment, thereby solving the problems of integral forming and severe deformation strengthening and toughening. The developed technology has good prospects for mass production and application.展开更多
A bulk nanocrystalline AZ31B Mg alloy with extraordinarily high strength was prepared via cryogenic rotary swaging in this study.The obtained alloy shows finer grains,higher strength,and a negligible tension-compressi...A bulk nanocrystalline AZ31B Mg alloy with extraordinarily high strength was prepared via cryogenic rotary swaging in this study.The obtained alloy shows finer grains,higher strength,and a negligible tension-compression yield asymmetry,compared with that prepared via room-temperature rotary swaging.Transmission electron microscopy investigations showed that at the initial stage,multiple twins,mostly tension twins,were activated and intersected with each other,thereby refining the coarse grains into a fine lamellar structure.Then,two types of nanoscale subgrains were generated with increasing swaging strain.The first type of nanoscale subgrain contained twin boundaries and low-angle grain boundaries.This type of subgrain appeared at the twin-twin intersections and was mainly driven by high local stress.The second type of nanoscale subgrain was formed within the twin lamellae.The boundaries of this type of subgrain did not contain twin boundaries and were transformed from massive dislocation arrays.Finally,randomly oriented nanograins were obtained via dynamic recrystallization,under the combined function of deformation heat and increased stored energy.Compared with room-temperature rotary swaging,cryogenic rotary swaging exhibits a slower grain refinement process but a remarkably enhanced grain refinement effect after the same five-pass swaging.展开更多
The zinc oxide rotary kiln,as an essential piece of equipment in the zinc smelting industrial process,is presenting new challenges in process control.China’s strategy of achieving a carbon peak and carbon neutrality ...The zinc oxide rotary kiln,as an essential piece of equipment in the zinc smelting industrial process,is presenting new challenges in process control.China’s strategy of achieving a carbon peak and carbon neutrality is putting new demands on the industry,including green production and the use of fewer resources;thus,traditional stability control is no longer suitable for multi-objective control tasks.Although researchers have revealed the principle of the rotary kiln and set up computational fluid dynamics(CFD)simulation models to study its dynamics,these models cannot be directly applied to process control due to their high computational complexity.To address these issues,this paper proposes a multi-objective adaptive optimization model predictive control(MAO-MPC)method based on sparse identification.More specifically,with a large amount of data collected from a CFD model,a sparse regression problem is first formulated and solved to obtain a reduction model.Then,a two-layered control framework including real-time optimization(RTO)and model predictive control(MPC)is designed.In the RTO layer,an optimization problem with the goal of achieving optimal operation performance and the lowest possible resource consumption is set up.By solving the optimization problem in real time,a suitable setting value is sent to the MPC layer to ensure that the zinc oxide rotary kiln always functions in an optimal state.Our experiments show the strength and reliability of the proposed method,which reduces the usage of coal while maintaining high profits.展开更多
基金the National Natural Science Foundation of China under Grant 62075169,Grant 62003247,and Grant 62061160370the Hubei Province Key Research and Development Program under Grant 2021BBA235the Zhuhai Basic and Applied Basic Research Foundation under Grant ZH22017003200010PWC.
文摘The rotary motion deblurring is an inevitable procedure when the imaging seeker is mounted in the rotating missiles.Traditional rotary motion deblurring methods suffer from ringing artifacts and noise,especially for large blur extents.To solve the above problems,we propose a progressive rotary motion deblurring framework consisting of a coarse deblurring stage and a refinement stage.In the first stage,we design an adaptive blur extents factor(BE factor)to balance noise suppression and details reconstruction.And a novel deconvolution model is proposed based on BE factor.In the second stage,a triplescale deformable module CNN(TDM-CNN)is designed to reduce the ringing artifacts,which can exploit the 2D information of an image and adaptively adjust spatial sampling locations.To establish a standard evaluation benchmark,a real-world rotary motion blur dataset is proposed and released,which includes rotary blurred images and corresponding ground truth images with different blur angles.Experimental results demonstrate that the proposed method outperforms the state-of-the-art models on synthetic and real-world rotary motion blur datasets.The code and dataset are available at https://github.com/JinhuiQin/RotaryDeblurring.
基金supported in part by the Youth Foundation of China University of Petroleum-Beijing at Karamay(under Grant No.XQZX20230038)the Karamay Innovative Talents Program(under Grant No.20212022HJCXRC0005).
文摘The Rotary Inverted Pendulum(RIP)is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge.Despite the implementation of various control strategies to maintain equilibrium,optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive.Existing methods frequently rely on extensive experimental data or the designer’s expertise,presenting a notable drawback.This paper proposes a novel tracking control approach for RIP,utilizing a Linear Quadratic Regulator(LQR)in combination with a reduced-order observer.Initially,the RIP system is mathematically modeled using the Newton-Euler-Lagrange method.Subsequently,a composite controller is devised that integrates an LQR for generating nominal control signals and a reduced-order observer for reconstructing unmeasured states.This approach enhances the controller’s robustness by eliminating differential terms from the observer,thereby attenuating unknown disturbances.Thorough numerical simulations and experimental evaluations demonstrate the system’s capability to maintain balance below50Hz and achieve precise tracking below1.4 rad,validating the effectiveness of the proposed control scheme.
文摘The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.
基金Supported by by Major State Basic Research Development Program of China ("973" Program, No. 2010CB327800)
文摘A CO2 laser die-cutting system, which does not need die board any more, is a new technique for manufac-turing packing box. Two optical paths, the galvanometer scanning system and the flying optical system, are used to satisfy different processing needs. The scanning system is composed of galvanometer scanning mirrors and F-θ lens. And the flying optical system is driven by two servo motors. This paper presents the software and hardware design of the laser die-cutting system, the difference between the two optical paths, as well as the relationship among the cutting speed, thickness of wrapping paper and laser power. The cutting speed and thickness of wrapping paper are linearly increased by the incremental laser power, while the cutting speed is hyperbolically decreased by the incremental thickness of wrapping paper when the laser power is constant. The amount of incision is reduced by 20% and the processing time by 40% when tested by a low power RF CO2 laser die-cutting system using the optimized program. This tech- nique is also used for the reference of other rapid laser processing systems.
基金The paper was partially supported by grants from the Research Grant Council,Hong Kong Special Administrative Region,P.R.China(Project Nos.HKU 17207518 and R5037-18).
文摘Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from two adjacent vertical drillholes that were formed with the same hydraulic rotary drilling machine and bit.The analysis of original factual data is presented to obtain the constant drilling speed during net drilling process.According to the factual data along two adjacent drillholes,the digitalization results respectively include 461 linear zones and 210 linear zones with their constant drilling speeds and associated drilling parameters.The digitalization results can accurately present the spatial distributions and interface boundaries of drilled geomaterials and the results are consistent with the paralleled site loggings.The weighted average drilling speeds from 2.335 m/min to 0.044 m/min represent 13 types of drilled geomaterials from soils to hard rocks.The quantitative relation between drilling speed and strength property is provided.The digitalization results can statistically profile the basic strength quality grades of III to VI from soils to hard rocks.The thickness distributions of four strength quality grades are presented for each individual type of geomaterials along two drillholes.In total,50.2%of geomaterials from drillhole A are grade IV and 57.4%of geomaterials from drillhole B are grade III.The digitalization results can offer an accurate and cost-effective tool to quantitatively describe the spatial distribution and in situ strength profile of drilled geomaterials in the current drilling projects.
基金Supported by National Natural Science Foundation of China(Grant Nos.52075501,51775520)Joint Funds of National Natural Science Foundation of China(Grant No.U20A20230)Shanxi Scholarship Council of China(2021-127).
文摘To satisfy the requirements for the precise formation of large-scale high-performance lightweight components with inner ring reinforcement, a new multidirectional loading rotary extrusion forming technology is developed to match the linear motion with the rotary motion and actively increases the strong shear force. Its principle is that the radial force and rotating torque increase when the blank is axially extruded and loaded. Through the synergistic action of axial, radial, and rotating motions, the orderly fow of metal is controlled, and the cumulative severe plastic deformation (SPD) of an“uplift-trowel” micro-area is generated. Consequently, materials are uniformly strengthened and toughened. Simultaneously, through the continuous deformation of a punch “ellipse-circle,” a high reinforcement component is grown on the cylinder wall to achieve the high-quality formation of cylindrical parts or the inner-ring-reinforcement components. Additionally, the efective strain increases with rotation speed, and the maximum intensity on the basal plane decreases as the number of revolutions increase. The punch structure also afects the axial extrusion loading and equivalent plastic strain. Thus, the proposed technology enriches the plastic forming theory and widens the application feld of plastic forming. Furthermore, the formed large-scale high-performance inner-ring-stifened magnesium components have been successfully verifed in aerospace equipment, thereby solving the problems of integral forming and severe deformation strengthening and toughening. The developed technology has good prospects for mass production and application.
基金Xin Chen,Chuming Liu,Yingchun Wan and Zhiyong Chen acknowledge National Natural Science Foundation of China(Grant number 51574291 and 51874367).
文摘A bulk nanocrystalline AZ31B Mg alloy with extraordinarily high strength was prepared via cryogenic rotary swaging in this study.The obtained alloy shows finer grains,higher strength,and a negligible tension-compression yield asymmetry,compared with that prepared via room-temperature rotary swaging.Transmission electron microscopy investigations showed that at the initial stage,multiple twins,mostly tension twins,were activated and intersected with each other,thereby refining the coarse grains into a fine lamellar structure.Then,two types of nanoscale subgrains were generated with increasing swaging strain.The first type of nanoscale subgrain contained twin boundaries and low-angle grain boundaries.This type of subgrain appeared at the twin-twin intersections and was mainly driven by high local stress.The second type of nanoscale subgrain was formed within the twin lamellae.The boundaries of this type of subgrain did not contain twin boundaries and were transformed from massive dislocation arrays.Finally,randomly oriented nanograins were obtained via dynamic recrystallization,under the combined function of deformation heat and increased stored energy.Compared with room-temperature rotary swaging,cryogenic rotary swaging exhibits a slower grain refinement process but a remarkably enhanced grain refinement effect after the same five-pass swaging.
基金supported in part by the National Key Research and Development Program of China(2022YFB3304900)in part by the National Natural Science Foundation of China(61988101,62073340,and 61860206014)+2 种基金in part by the Major Key Project of Peng Cheng Laboratory(PCL)(PCL2021A09)in part by the Science and Technology Innovation Program of Hunan Province(2022JJ10083,2021RC3018,and 2021RC4054)in part by the Innovation-Driven Project of Central South University,China(2019CX020)。
文摘The zinc oxide rotary kiln,as an essential piece of equipment in the zinc smelting industrial process,is presenting new challenges in process control.China’s strategy of achieving a carbon peak and carbon neutrality is putting new demands on the industry,including green production and the use of fewer resources;thus,traditional stability control is no longer suitable for multi-objective control tasks.Although researchers have revealed the principle of the rotary kiln and set up computational fluid dynamics(CFD)simulation models to study its dynamics,these models cannot be directly applied to process control due to their high computational complexity.To address these issues,this paper proposes a multi-objective adaptive optimization model predictive control(MAO-MPC)method based on sparse identification.More specifically,with a large amount of data collected from a CFD model,a sparse regression problem is first formulated and solved to obtain a reduction model.Then,a two-layered control framework including real-time optimization(RTO)and model predictive control(MPC)is designed.In the RTO layer,an optimization problem with the goal of achieving optimal operation performance and the lowest possible resource consumption is set up.By solving the optimization problem in real time,a suitable setting value is sent to the MPC layer to ensure that the zinc oxide rotary kiln always functions in an optimal state.Our experiments show the strength and reliability of the proposed method,which reduces the usage of coal while maintaining high profits.