期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Effects of Nd and rotary forging on mechanical properties of AZ71 Mg alloys 被引量:3
1
作者 陈贞光 陈宇辰 +2 位作者 李宪宗 陈锦修 张浚荣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3223-3231,共9页
The effects of Nd addition on the mechanical properties and plastic deformability of AZ71 Mg alloys were investigated.0.5%-2.0%(mass fraction) Nd was added to AZ71 Mg alloys.The grain size and the amount of brittle ... The effects of Nd addition on the mechanical properties and plastic deformability of AZ71 Mg alloys were investigated.0.5%-2.0%(mass fraction) Nd was added to AZ71 Mg alloys.The grain size and the amount of brittle β-Mg17Al12 phase reduce with increasing the Nd addition,while nanosized AlxNdy precipitates form.In combination with 32% rotary forging and subsequent annealing,the grain size of Nd-added AZ71 Mg alloys reduces greatly from over 350 μm to below 30 μm.Both tensile strength and ductility increase with the Nd addition up to 1.0%.The addition of Nd beyond 1.0% leads to the aggregations of rod-shaped Al11Nd3 and blocky Al2 Nd precipitates,thereby deteriorating both strength and ductility.The 1.0% Nd-added AZ71 Mg alloy shows tensile strength up to 253 MPa and elongation of 10.7%.It is concluded that adding 1.0% Nd to AZ71 Mg alloy yields the optimum toughness,whether under as-cast or rotary forging and annealing conditions. 展开更多
关键词 AZ71Mg alloys ND rotary forging mechanical properties RECRYSTALLIZATION
下载PDF
Modelling and simulation of contact force in cold rotary forging 被引量:2
2
作者 秦训鹏 《Journal of Central South University》 SCIE EI CAS 2014年第1期35-42,共8页
Cold rotary forging is an advanced and complex metal forming technology with continuous local plastic deformation.Investigating the contact force between the dies and the workpiece has a great significance to improve ... Cold rotary forging is an advanced and complex metal forming technology with continuous local plastic deformation.Investigating the contact force between the dies and the workpiece has a great significance to improve the life of the dies in cold rotary forging.The purpose of this work is to reveal the contact force responses in cold rotary forging through the modelling and simulation.For this purpose,a 3D elastic-plastic dynamic explicit FE model of cold rotary forging is developed using the FE code ABAQUS/Explicit.Through the modelling and simulation,the distribution and evolution of the contact force in cold rotary forging is investigated in detail.The experiment has been conducted and the validity of the 3D FE model of cold rotary forging has been verified.The results show that: 1) The contact force distribution is complex and exhibits an obvious non-uniform characteristic in the radial and circumferential directions; 2) The maximum contact force between the upper die and the workpiece is much larger than that between the lower die and the workpiece; 3) The contact force evolution history is periodic and every period experiences three different stages; 4) The total normal contact force is much larger than the total shear contact force at any given time. 展开更多
关键词 cold rotary forging metal forming SIMULATION contact force die life
下载PDF
FINITE ELEMENT MODEL AND SIMULATION OF ROTARY FORGING OF A DISC 被引量:1
3
作者 G.Liu, S. J. Yuan, Z. R. Wang and T. Xie 1) Harbin Institute of Technology, Harbin 150001, China 2) Harbin Huasheng Coorpration, Harbin 150001, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期470-475,共6页
The rotary forging process of a disc is simulated by 3-D finite element method.The motion of the rotary the is described as the combination of a revolution round the machine axis and a spin round the rotary die axis... The rotary forging process of a disc is simulated by 3-D finite element method.The motion of the rotary the is described as the combination of a revolution round the machine axis and a spin round the rotary die axis. Therefore, the workpiece can be loaded and unloaded partly and cyclically by the cone surface of the rotary the continuously, according with the practical rotary forging process. From the siumulation rasults, the causes of center-thinning during rotary forging of discs are that the locally loading of rotary die made the workpiece center get high radial and tangential tensile stresses, and then the shortening in axial direction and the elongating in tangential and radial direction occur continuous- ly. 展开更多
关键词 finite element simulation rotary forging disc center-thinning
下载PDF
STUDY ON THE NUMERICAL SIMULATION OF MULTI-STAGE ROTARY FORGING OF A NON-AXISYMMETRIC PART AND THE CAE ANALYSIS OF THE DIE STRENGTH
4
作者 H. Tian J. Wang W.P. Dong J. Chen Z. Zhao G.M. Wu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第5期627-634,共8页
Traditionally a rotary forging process is a kind of metal forming method where a conic upper die, whose axis is deviated an angle from the axis of machine, forges a billet continuously and partially to finish the whol... Traditionally a rotary forging process is a kind of metal forming method where a conic upper die, whose axis is deviated an angle from the axis of machine, forges a billet continuously and partially to finish the whole deformation. For the rotary forging process simulation, more researches were focused on simulating the simple stage forming process with axisymmetric part geometry. Whereas in this paper, the upper die is not cone-shaped, and the billet is non-axisymmetric. So the movement of the punch is much more complicated than ever. The 3D FEM simulation models for the preforming & final forming processes are set up aider carefully studying the complicated movement pattern. Deform-3D is used to simulate the material flow, and the boundary nodal resisting forces calculated by the final stage process simulation is used to analyze the final forming die strength. The CAE analysis of the die shows that the design of the final forming die is not reasonable with lower pre-stress which is easy to crack at the critical corners. An optimum die design is also provided with higher pre-stress, and verified by CAE analysis. 展开更多
关键词 numerical simulation NON-AXISYMMETRIC rotary forging die strength
下载PDF
Simulation and Analysis of Microstructure Evolution of IN718 in Rotary Forgings by FEM
5
作者 于忠奇 马秋 林忠钦 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第6期721-726,共6页
A numerical analysis was performed to study the influence of process parameters on the microstructure evolution of IN718 alloy in rotary forging using the finite element method (FEM). For this purpose, a constitutiv... A numerical analysis was performed to study the influence of process parameters on the microstructure evolution of IN718 alloy in rotary forging using the finite element method (FEM). For this purpose, a constitutive equation considering the effects of strain hardening and dynamic softening of IN718 alloy was built. The constitutive equation and microstructure models were implemented into the finite element code to investigate the microstructure evolution during rotary forging subject to large deformations. The simulations were carried out in the ratio of initial height to diameter range 0.2-0.8, the angle of the rocker 3°-7° and the relative feed per revolution range 0.01-0.1 r^-1. The research results revealed the deformation mechanism and the correlation of process parameters with the grain size evolution of IN718 alloy during rotary forging. These provide evidence for the selection of rotary forging parameters. 展开更多
关键词 rotary forging finite element method (FEM) microstructure evolution deformation mechanism IN718 alloy
原文传递
Research on rotary forming mechanism of cartridge bottom by FEM
6
作者 刘钢 姚雄亮 +1 位作者 黄少东 唐全波 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第1期24-27,共4页
The rotary forging of a cartridge bottom is simulated by finite element method with DEFORM TM . The analysis of stress and strain rate results indicates that the deformation conditions and the final geometry of a prod... The rotary forging of a cartridge bottom is simulated by finite element method with DEFORM TM . The analysis of stress and strain rate results indicates that the deformation conditions and the final geometry of a product are not completely axis symmetrical under the partial loading conditions during the rotary forging operations. It is therefore required to have a few more rotary forging cycles at the end of total feeding to eliminate nonuniformity. The results of simulation show that the optimization of rotary forging process conditions can be achieved to avoid the underfill defect resulting from improper process conditions. This technology can be used to manufacture ring components with thin bottoms by properly controlling the working process and the tooling motion. 展开更多
关键词 rotary forging cartridge bottom finite element analysis
下载PDF
Effects of niobium addition on microstructure and properties of CPM121 powder metallurgy high-speed steel 被引量:1
7
作者 ZHANG Qian-kun LI Su-wang +6 位作者 XIAO Yi-feng WU Liang QIAN Jin-wen CHEN Ze-min SHEN Wei-jun LIN Nan HE Yue-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1206-1218,共13页
Massive vanadium additions as hard phases in powder metallurgy high-speed steels(PM HSS)lead to higher cost and bad machinability.In this study,ultrahigh alloy PM HSS with CPM121(10W-5Mo-4Cr-10V-9Co,wt.%)as the basic ... Massive vanadium additions as hard phases in powder metallurgy high-speed steels(PM HSS)lead to higher cost and bad machinability.In this study,ultrahigh alloy PM HSS with CPM121(10W-5Mo-4Cr-10V-9Co,wt.%)as the basic composition,was directly compacted and activation sintered with near-full density(>99.0%)using pre-oxidized and ball-mixed element and carbide powders.Niobium-alloyed steels(w(V)+w(Nb)=10 wt.%)show higher hardness and wear resistance,superior secondary-hardening ability and temper resistance.But excess niobium addition(>5 wt.%)leads to coarsened carbides and deteriorated toughness.EPMA results proved that niobium tends to distribute in MC carbides and forces element W to form M6C and WC carbides.Further,the role of rotary forging on properties of niobium-alloyed steels(S3)was researched.After rotary forging with deformation of 40%,the bending strength and fracture toughness of niobium-alloyed steels could be further improved by 20.74%and 43.86%compared with those of sample S3 without rotary forging,respectively. 展开更多
关键词 CPM121 niobium-alloying microstructure mechanical properties temper resistance wear resistance rotary forging powder metallurgy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部