Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from...Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from two adjacent vertical drillholes that were formed with the same hydraulic rotary drilling machine and bit.The analysis of original factual data is presented to obtain the constant drilling speed during net drilling process.According to the factual data along two adjacent drillholes,the digitalization results respectively include 461 linear zones and 210 linear zones with their constant drilling speeds and associated drilling parameters.The digitalization results can accurately present the spatial distributions and interface boundaries of drilled geomaterials and the results are consistent with the paralleled site loggings.The weighted average drilling speeds from 2.335 m/min to 0.044 m/min represent 13 types of drilled geomaterials from soils to hard rocks.The quantitative relation between drilling speed and strength property is provided.The digitalization results can statistically profile the basic strength quality grades of III to VI from soils to hard rocks.The thickness distributions of four strength quality grades are presented for each individual type of geomaterials along two drillholes.In total,50.2%of geomaterials from drillhole A are grade IV and 57.4%of geomaterials from drillhole B are grade III.The digitalization results can offer an accurate and cost-effective tool to quantitatively describe the spatial distribution and in situ strength profile of drilled geomaterials in the current drilling projects.展开更多
This study purposes an in situ testing method on quality assessment of soil improvement.Factual drilling data includes the spatial distribution and in situ strength of untreated and treated soil along three different ...This study purposes an in situ testing method on quality assessment of soil improvement.Factual drilling data includes the spatial distribution and in situ strength of untreated and treated soil along three different drillholes measured by on-site drilling monitoring method.These factual drilling data can characterize the degree of soil improvement by penetration injection with permeable polyurethane.Result from on-site drilling monitoring shows that the linear zones represent constant drilling speeds shown in the plot of drill bit advancement vs.net drilling time,which indicates the spatial distributions of soil profile.The soil profile at the study site is composed of four layers,which includes fill,untreated silty clay,treated silty clay,and mucky soil.The results of soil profile are verified by the parallel site loggings.The constant drilling speeds profile the coring-resistant strength of drilled soils.By comparing with the untreated silty clay,the constant drilling speeds of the treated silty clay have been decreased by 13.0-62.8%.Two drilling-speed-based indices of 61.2%and 65.6%are proposed to assess the decreased average drilling speed and the increased in situ strength of treated silty clay.Laboratory tests,i.e.uniaxial compressive strength(UCS)test,have been performed with core sample to investigate and characterize in situ strength by comparing that with drilling speeds.Results show that the average predicted strengths of treated silty clay are 2.4-6.9 times higher than the average measured strength of untreated silty clay.The UCS-based indices of 374.5%and 344.2%verified the quality assessment(QA)results by this new in situ method.This method provides a cost-effective tool for quality assessment of soil improvement by utilizing the digital drilling data.展开更多
A drilling process monitor (DPM) for ground characterization of weathered granite is presented. The monitor is portable and can be mounted on a hydraulic rotary drilling rig to record various drilling parameters in ...A drilling process monitor (DPM) for ground characterization of weathered granite is presented. The monitor is portable and can be mounted on a hydraulic rotary drilling rig to record various drilling parameters in real time during normal subsurface investigation. The identification method for dominative and subsidiary interfaces has been established. The study reveals that the monitored drilling parameters are dependent on geotechnical materials and can be further applied to characterize ground interfaces. The t-test between manual logging and DPM logging has been carried out. The results show that the DPM has high accuracy in interfaces detection and well agreement with the manual logging. The findings show that the device and data analysis method are of potential application in subsurface drilling exploration in weathered granites. It also seems to have prospective uses in the determination of orebody boundary as well as in the detection of geohazards.展开更多
The successful application in drilling for HK simple weathered granite foundation has revealed its further use in instru- mented drilling system as a ground investigation tool in the detection of other lithology forma...The successful application in drilling for HK simple weathered granite foundation has revealed its further use in instru- mented drilling system as a ground investigation tool in the detection of other lithology formations, geohazards, underground water, and boundary of orebody. To expand the further use and test the accuracy in identification of formation, an R-20 rotary-hydraulic drill rig was instrumented with a digital drilling process monitoring system (DPM) for drilling in an intricate decomposed granite site. In this test ground, the boreholes revealed that the weathered granite alternately changes between moderate and strong. The qualitative and quantitative analysis of the penetrating parameters, indicates the effective thrust force, rotary speed, flushing pressure, penetrating rate, and displacement of the bit fluctuate at ground interfaces. It shows that the parameters get a good response with the change of rock strength at the interfaces, which can reveal the change of the intricate granite formation. Besides, a variable-slope method has been established, for identification of dominative and subsidiary interfaces in the granite site. The result from a t-test shows that the confi- dence of the instrumented drilling system in identification of the geotechnical interfaces is up to 99%.展开更多
基金The paper was partially supported by grants from the Research Grant Council,Hong Kong Special Administrative Region,P.R.China(Project Nos.HKU 17207518 and R5037-18).
文摘Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from two adjacent vertical drillholes that were formed with the same hydraulic rotary drilling machine and bit.The analysis of original factual data is presented to obtain the constant drilling speed during net drilling process.According to the factual data along two adjacent drillholes,the digitalization results respectively include 461 linear zones and 210 linear zones with their constant drilling speeds and associated drilling parameters.The digitalization results can accurately present the spatial distributions and interface boundaries of drilled geomaterials and the results are consistent with the paralleled site loggings.The weighted average drilling speeds from 2.335 m/min to 0.044 m/min represent 13 types of drilled geomaterials from soils to hard rocks.The quantitative relation between drilling speed and strength property is provided.The digitalization results can statistically profile the basic strength quality grades of III to VI from soils to hard rocks.The thickness distributions of four strength quality grades are presented for each individual type of geomaterials along two drillholes.In total,50.2%of geomaterials from drillhole A are grade IV and 57.4%of geomaterials from drillhole B are grade III.The digitalization results can offer an accurate and cost-effective tool to quantitatively describe the spatial distribution and in situ strength profile of drilled geomaterials in the current drilling projects.
基金supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,PR China(Project Nos.HKU 17207518 and R5037-18).
文摘This study purposes an in situ testing method on quality assessment of soil improvement.Factual drilling data includes the spatial distribution and in situ strength of untreated and treated soil along three different drillholes measured by on-site drilling monitoring method.These factual drilling data can characterize the degree of soil improvement by penetration injection with permeable polyurethane.Result from on-site drilling monitoring shows that the linear zones represent constant drilling speeds shown in the plot of drill bit advancement vs.net drilling time,which indicates the spatial distributions of soil profile.The soil profile at the study site is composed of four layers,which includes fill,untreated silty clay,treated silty clay,and mucky soil.The results of soil profile are verified by the parallel site loggings.The constant drilling speeds profile the coring-resistant strength of drilled soils.By comparing with the untreated silty clay,the constant drilling speeds of the treated silty clay have been decreased by 13.0-62.8%.Two drilling-speed-based indices of 61.2%and 65.6%are proposed to assess the decreased average drilling speed and the increased in situ strength of treated silty clay.Laboratory tests,i.e.uniaxial compressive strength(UCS)test,have been performed with core sample to investigate and characterize in situ strength by comparing that with drilling speeds.Results show that the average predicted strengths of treated silty clay are 2.4-6.9 times higher than the average measured strength of untreated silty clay.The UCS-based indices of 374.5%and 344.2%verified the quality assessment(QA)results by this new in situ method.This method provides a cost-effective tool for quality assessment of soil improvement by utilizing the digital drilling data.
基金This work is financially supported by the Research Grant Council of HKSAR Government and Hong Kong Jockey Club CharitiesTrust.
文摘A drilling process monitor (DPM) for ground characterization of weathered granite is presented. The monitor is portable and can be mounted on a hydraulic rotary drilling rig to record various drilling parameters in real time during normal subsurface investigation. The identification method for dominative and subsidiary interfaces has been established. The study reveals that the monitored drilling parameters are dependent on geotechnical materials and can be further applied to characterize ground interfaces. The t-test between manual logging and DPM logging has been carried out. The results show that the DPM has high accuracy in interfaces detection and well agreement with the manual logging. The findings show that the device and data analysis method are of potential application in subsurface drilling exploration in weathered granites. It also seems to have prospective uses in the determination of orebody boundary as well as in the detection of geohazards.
基金the Research Grant Council of HKSAP Government and Hong Kong Jockey Club Charities Trust(No.HKU7005/01E).
文摘The successful application in drilling for HK simple weathered granite foundation has revealed its further use in instru- mented drilling system as a ground investigation tool in the detection of other lithology formations, geohazards, underground water, and boundary of orebody. To expand the further use and test the accuracy in identification of formation, an R-20 rotary-hydraulic drill rig was instrumented with a digital drilling process monitoring system (DPM) for drilling in an intricate decomposed granite site. In this test ground, the boreholes revealed that the weathered granite alternately changes between moderate and strong. The qualitative and quantitative analysis of the penetrating parameters, indicates the effective thrust force, rotary speed, flushing pressure, penetrating rate, and displacement of the bit fluctuate at ground interfaces. It shows that the parameters get a good response with the change of rock strength at the interfaces, which can reveal the change of the intricate granite formation. Besides, a variable-slope method has been established, for identification of dominative and subsidiary interfaces in the granite site. The result from a t-test shows that the confi- dence of the instrumented drilling system in identification of the geotechnical interfaces is up to 99%.