Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating perio...Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating periodic micro- and nanostructures. In the present study, diamond tools with geometrically defined cutting edges were designed for fabricating different types of tailored surface textures using the RUT method. Surface generation mechanisms and machinable structures of the RUT process are analyzed and simulated with a 3D-CAD program. Textured surfaces generated by using a triangular pyramid cutting tip are constructed. Different textural patterns from several micrometers to several tens of micrometers with few burrs were successfully fabricated, which proved that tools with a proper two-rake-face design are capable of removing cutting chips efficiently along a sinusoidal cutting locus in the RUT process. Technical applications of the textured surfaces are also discussed. Wetting properties of textured aluminum surfaces were evaluated by combining the test of surface roughness features. The results show that the real surface area of the textured aluminum surfaces almost doubled by comparing with that of a flat surface, and anisotropic wetting properties were obtained due to the obvious directional textural features.展开更多
Super alloys are intensively used in various industries, especially in the aerospace industry, because of their special characteristics. A number of holes are sometimes required to be drilled into super alloys for air...Super alloys are intensively used in various industries, especially in the aerospace industry, because of their special characteristics. A number of holes are sometimes required to be drilled into super alloys for aircraft at their final stage assembly. In the present study, a hybrid ultrasonic machining method, called rotary ultrasonic machining (RUM), was successfully used in super alloy drilling. The empirical modeling of the process parameters of RUM was performed for the super alloy (Inconel 718) using an experimental design approach, called response surface methodology (RSM). Parameters, namely tool rotation, feed rate, ultrasonic power, and abrasive grit size, were selected as input variables. The others were kept constant. The performance was measured in terms of the machining rate and the surface roughness. The developed models were found to be reliable representatives of the experimental results with prediction errors less than 4-5%. Moreover, the feed rate for the quality and productivity aspect was found to be the most critical factor. The optimized values of the machining rate and the surface roughness achieved through a multi-response optimization were 0.9 825 mm3/s and 0.951 i.tm, respectively.展开更多
In recent years,industrial robots have received extensive attention in manufacturing field due to their high flexibility and great workspace.However,the weak stiffness of industrial robots makes it extremely easy to a...In recent years,industrial robots have received extensive attention in manufacturing field due to their high flexibility and great workspace.However,the weak stiffness of industrial robots makes it extremely easy to arouse chatter,which affects machining quality inevitably and generates noise pollution in severe cases.Compared with drilling,the chatter mechanism of robotic countersinking is more complex.The external excitation changes with cutting width and depth in countersinking.This characteristic results in time-varying and nonlinearity of robotic countersinking dynamics.Thus,it is urgent to propose a new method of chatter suppression and provide an accurate stability analysis model.As a new special machining technology,rotary ultrasonic machining has been proved to improve robotic drilling and milling stability effectively.Based on this,robotic rotary ultrasonic countersinking(RRUC)is proposed to improve the robotic countersinking stability in this paper.A three-dimensional stability domain method of RRUC is established.First,the countersinking process was divided intoρparts.The dynamic model of every unit was constructed based on ultrasonic function angle(γ)and dynamic chip area.Then,the stability region of RRUC is obtained based on the semi-discrete method(SDM).Compared with the robotic conventional countersinking(RCC),RRUC improves the stability by 27%.Finally,the correctness and effectiveness of the stability region model are proved by robotic ultrasonic countersinking experiments.展开更多
基金Supported by Japan Society for the Promotion of Science(Grant Nos.14J04115,16K17990)
文摘Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating periodic micro- and nanostructures. In the present study, diamond tools with geometrically defined cutting edges were designed for fabricating different types of tailored surface textures using the RUT method. Surface generation mechanisms and machinable structures of the RUT process are analyzed and simulated with a 3D-CAD program. Textured surfaces generated by using a triangular pyramid cutting tip are constructed. Different textural patterns from several micrometers to several tens of micrometers with few burrs were successfully fabricated, which proved that tools with a proper two-rake-face design are capable of removing cutting chips efficiently along a sinusoidal cutting locus in the RUT process. Technical applications of the textured surfaces are also discussed. Wetting properties of textured aluminum surfaces were evaluated by combining the test of surface roughness features. The results show that the real surface area of the textured aluminum surfaces almost doubled by comparing with that of a flat surface, and anisotropic wetting properties were obtained due to the obvious directional textural features.
文摘Super alloys are intensively used in various industries, especially in the aerospace industry, because of their special characteristics. A number of holes are sometimes required to be drilled into super alloys for aircraft at their final stage assembly. In the present study, a hybrid ultrasonic machining method, called rotary ultrasonic machining (RUM), was successfully used in super alloy drilling. The empirical modeling of the process parameters of RUM was performed for the super alloy (Inconel 718) using an experimental design approach, called response surface methodology (RSM). Parameters, namely tool rotation, feed rate, ultrasonic power, and abrasive grit size, were selected as input variables. The others were kept constant. The performance was measured in terms of the machining rate and the surface roughness. The developed models were found to be reliable representatives of the experimental results with prediction errors less than 4-5%. Moreover, the feed rate for the quality and productivity aspect was found to be the most critical factor. The optimized values of the machining rate and the surface roughness achieved through a multi-response optimization were 0.9 825 mm3/s and 0.951 i.tm, respectively.
基金the Project on the Technological Leading Talent Teams Led by Frontiers Science Center for Complex Equipment System Dynamics(No.FSCCESD220401)the National Natural Science Foundation of China(No.52075265).
文摘In recent years,industrial robots have received extensive attention in manufacturing field due to their high flexibility and great workspace.However,the weak stiffness of industrial robots makes it extremely easy to arouse chatter,which affects machining quality inevitably and generates noise pollution in severe cases.Compared with drilling,the chatter mechanism of robotic countersinking is more complex.The external excitation changes with cutting width and depth in countersinking.This characteristic results in time-varying and nonlinearity of robotic countersinking dynamics.Thus,it is urgent to propose a new method of chatter suppression and provide an accurate stability analysis model.As a new special machining technology,rotary ultrasonic machining has been proved to improve robotic drilling and milling stability effectively.Based on this,robotic rotary ultrasonic countersinking(RRUC)is proposed to improve the robotic countersinking stability in this paper.A three-dimensional stability domain method of RRUC is established.First,the countersinking process was divided intoρparts.The dynamic model of every unit was constructed based on ultrasonic function angle(γ)and dynamic chip area.Then,the stability region of RRUC is obtained based on the semi-discrete method(SDM).Compared with the robotic conventional countersinking(RCC),RRUC improves the stability by 27%.Finally,the correctness and effectiveness of the stability region model are proved by robotic ultrasonic countersinking experiments.