In this paper, an algorithm for simulating fluid flow and heat transfer for mold filling of shaped castings is presented. The main features of the algorithm include: 1) a simple but practical technique based on VOF me...In this paper, an algorithm for simulating fluid flow and heat transfer for mold filling of shaped castings is presented. The main features of the algorithm include: 1) a simple but practical technique based on VOF method to determine free surface, 2) an explicit scheme of enthalpy to solve the energy equation more efficiently, and 3) an effective treatment to modify the flux deviation due to pressure iteration. In order to verify these methods, well controlled experiments have been repeatedly done with both water analog and gray iron pouring experiments to record the flow patterns and temperature variations. The calculated results are in accordance with the experimental ones. For the applications, the simulated initial temperature distribution right after mold filling was used to analyse subsequent solidification and to predict shrinkage defects. Actual castings were poured and tested in a foundry plant. The reuslts show that the defects predication with considering fluid flow effects is more precise than that without considering the effects.展开更多
Facing the market economy and global challenge the development ofmanufacturing industry especially casting industry is critical to the national economy. To reformthe traditional casting industry by using computer tech...Facing the market economy and global challenge the development ofmanufacturing industry especially casting industry is critical to the national economy. To reformthe traditional casting industry by using computer technology is one of the hottest researchfrontiers studied by many researchers and engineers. Computer simulation of solidification processof shaped casting can assure the quality of casting, optimize the casting technology, shorten thelead time and therefore decrease the developing and manufacturing cost. Recently, numericalsimulation of mold-filling and solidification processes of shaped casting and prediction ofmicrostructure and property as well are extensively studied and put into application in many castingplants with many successful simulation cases.展开更多
The effects of microalloying elements Ti,Sc,Zr and Er on grain refinement behaviors and hardness properties of wedge-shaped Al-Mg-Mn alloy castings were investigated. The results indicate that alloys containing Sc and...The effects of microalloying elements Ti,Sc,Zr and Er on grain refinement behaviors and hardness properties of wedge-shaped Al-Mg-Mn alloy castings were investigated. The results indicate that alloys containing Sc and Zr can remarkably reduce the grain sizes of Al-Mg-Mn castings. Combination of Sc,Zr and Er can completely eliminate the columnar dendritic grains and further obtain refined grains with nondendritic sub-structure;the whole wedge-shaped cross-section of the casting consequently exhibits more homogeneous cast structures instead of the typical tri-crystal region structures. Large amounts of Al3Sc-based intermetallic compound particles,such as Al3(Sc1-x,Zrx),Al3(Sc1-x,Tix),Al3(Sc1-x-y,Zrx,Tiy) and Al3(Sc1-x-y,Zrx,Ery) are present in the microalloyed alloys,resulting from their numerously forming in high-temperature melt before solidification. These phases have the same L12-type crystal structure to Al3Sc phase as well as smaller misfits with the primary α(Al) grains,which leads to more efficient epitaxial growth for α(Al) grains on all crystal planes of these composite phases. The experimental alloys have been hardened in different levels and,show the low susceptibilities of hardness change with varying cooling rate. The high hardness of the castings are caused by grain-refined strengthening and solid solution strengthening.展开更多
The automobile suspension parts of a high strength 6xxx aluminum alloy were produced using a novel technique known as near net shape casting for forging stock preparation. Based on the outline dimension of the forging...The automobile suspension parts of a high strength 6xxx aluminum alloy were produced using a novel technique known as near net shape casting for forging stock preparation. Based on the outline dimension of the forging stock, the shape of the ingot was designed as the near net shape and its casting process was studied by the numerical simulation and experimental investigation. The results show that the shrinkage of the ingot was highly correlated to its shape parameters and could be successfully forecast by the stimulation model. The casting parameters of the near net shape ingot were optimized and the near net shape 6xxx aluminum alloy ingots free of defects were cast in the laboratory. In order to obtain high performance forged suspension parts, the hot compression tests of the ingot were carried out. The results show that the subgrain fraction of the forged ingot was strongly affected by Zener-Hollomon parameters (Z parameters). The intermediate Z parameters, 1.09×10^16 s^-1, will contribute to the larger number fraction of subgrains inside the forged ingot, which contributes to the high performance of the forged products.展开更多
An anchor-shaped geometrical design for a Submerged Entry Nozzle for the slab continuous casting of steel is presented in this work. To evaluate its performance, transient 3D multiphase numerical simulations were carr...An anchor-shaped geometrical design for a Submerged Entry Nozzle for the slab continuous casting of steel is presented in this work. To evaluate its performance, transient 3D multiphase numerical simulations were carried out using the Computational Fluid Dynamics technique. The performance of the proposed nozzle is numerically compared with that of a conventional cylindrical nozzle. Computer results show that the chance of formation of Karman’s vortexes and powder entrapment becomes small for the anchor-shaped SEN.展开更多
Vacuum pressurizing casting technique, providing better mould filling and inter-dendritic feeding, can reduce the porosity greatly in cast aluminum alloys, and improve the fatigue properties. The rotary bending fatigu...Vacuum pressurizing casting technique, providing better mould filling and inter-dendritic feeding, can reduce the porosity greatly in cast aluminum alloys, and improve the fatigue properties. The rotary bending fatigue properties of A356-T6 alloys prepared by vacuum pressurizing casting were investigated. The S-N curve and limit strength 90 MPa under fatigue life of 107 cycles were obtained. The analyses on the fatigue fractography and microstructure of specimens showed that the fatigue fracture mainly occurs at the positions with casting defects in the subsurface, especially at porosities regions, which attributed to the crack propagation during the fatigue fracture process. Using the empirical crack propagation law of Pairs-Erdogon, the quantitative relationship among the initial crack size, fatigue life and applied stress was established. The fatigue life decreases with an increase in initial crack size. Two constants in the Pairs-Erdogon equation of aluminum alloy A356-T6 were calculated using the experimental data.展开更多
With the increasing use of aluminum shape castings in structural applications in the automotive and aerospace industries,assurance of cast product integrity and performance has become critical in both design and manuf...With the increasing use of aluminum shape castings in structural applications in the automotive and aerospace industries,assurance of cast product integrity and performance has become critical in both design and manufacturing.In this paper,the latest understanding of the relationship between casting quality and mechanical properties of aluminum castings is summarized.Newly developed technologies for alloy design,melting and melt treatment,casting and heat treatment processes in aluminum casting are reviewed.The mechanical properties of aluminum castings strongly depend upon their microstructure constituents and particularly cast defect population and distribution.To produce quality castings with quantifiable properties,the key is to control multi-scale defects and microstructure in the casting.Robust design and development of high integrity aluminum castings through Integrated Computational Materials Engineering(ICME) approach is also discussed.The most effective way to optimize the processes and achieve the desirable mechanical properties is through the development and exploitation of robust and accurate multi-scale computational models.展开更多
According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15...According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15°(+15°) should be adopted, which will benefit the floatation of non-metallic inclusion and purification of the molten steel. When the nozzle angle is 120°, the flow pattern is reasonable. Proper nozzle depth can be 200mm. Turbulent kinetic of meniscus can be reduced by adopting the square nozzle and suitable area of side outlet when casting speed increases. The results are consistent with those of water model experiment, so the model is exact and reasonable. The model can provide important information for design of SEN and defining of immersion depth.展开更多
Fluid flow, heat transfer and solidification of steel in the mold are so complex but crucial, determining the surface quality of the continuous casting slab. In the current study, a 2D numerical model was established ...Fluid flow, heat transfer and solidification of steel in the mold are so complex but crucial, determining the surface quality of the continuous casting slab. In the current study, a 2D numerical model was established by Fluent software to simulate the fluid flow, heat transfer and solidification of the steel in the mold. The VOF model and k-ε model were applied to simulate the flow field of the three phases(steel, slag and air), and solidification model was used to simulate the solidification process. The phenomena at the meniscus were also explored through interfacial tension between the liquid steel and slag as well as the mold oscillation. The model included a 20 mm thick mold to clarify the heat transfer and the temperature distribution of the mold. The simulation results show that the liquid steel flows as upper backflow and lower backflow in the mold, and that a small circulation forms at the meniscus. The liquid slag flows away from the corner at the meniscus or infiltrates into the gap between the mold and the shell with the mold oscillating at the negative strip stage or at the positive strip stage. The simulated pitch and the depth of oscillation marks approximate to the theoretical pitch and measured depth on the slab.展开更多
The alpha-case formation reactions between Ti and investment molds (Al-2O-3,ZrSiO-4,ZrO-2,CaO stabilized ZrO-2) were evaluated in a plasma arc melting furnace.Regardless of thermodynamic approaches,there were distin...The alpha-case formation reactions between Ti and investment molds (Al-2O-3,ZrSiO-4,ZrO-2,CaO stabilized ZrO-2) were evaluated in a plasma arc melting furnace.Regardless of thermodynamic approaches,there were distinct alpha-case formations.The reaction products were characterized by electron probe micro-analysis and transmission electron microscopy.Theα-case generation between Ti and Al-2O-3 mold was not able to be explained by the conventionalα-case formation mechanism,which is known to be formed by the interstitials,especially oxygen dissolved from mold materials.However,from our experimental results and thermodynamic calculations,it was confirmed that theα-case is formed not only by an interstitial element but also by substitutional metallic elements dissolved from mold materials.Our newly establishedα-case formation mechanism will surely lead to a variety of significant applications of theα-case controlled Ti casting.展开更多
The mold filling process of titanium alloy in a thin-walled cylinder cavity under vertical centrifugal casting process was studied by means of the hydraulic simulation experiments. Results show that the filling mode o...The mold filling process of titanium alloy in a thin-walled cylinder cavity under vertical centrifugal casting process was studied by means of the hydraulic simulation experiments. Results show that the filling mode of the melt in the cylinder cavity varies with casting wall-thickness. When the casting wall-thickness is less than or equal to the thickness of the first layer during the filling process, the melts fill the cavity from the bottom to the top.When the casting wall-thickness is greater than the thickness of the first layer during the filling process, the melts first fill the largest radius parts of the cavity with a certain thickness of the first layer from the bottom to the top of the cavity, and then they fill the cavity from the larger radius part to the smaller radius part. The melt filling ability increases with the increment of the mold rotational speed and the pouring temperature. In another aspect, the melt filling ability rises with the decrement of the melt viscosity, and the melt with the better filling ability is prone to fill the cylinder cavity layer by layer.展开更多
The morphology,size and composition of intermetallic compound at the interface of Al 1050 and nodular cast iron were studied by electron microprobe analysis(EMPA)and scan electron microscopy(SEM),respectively.The bond...The morphology,size and composition of intermetallic compound at the interface of Al 1050 and nodular cast iron were studied by electron microprobe analysis(EMPA)and scan electron microscopy(SEM),respectively.The bond strength of the interface was measured by the tensile tests and the morphology of the fracture surface was observed by SEM.The observation of the interface reveals that there are two distinct morphologies:no intermetallic compound exists in the central area at the interface;while numbers of intermetallic compounds(FexAly)are formed in the peripheral area due to the overfull heat input.The tensile tests indicate that the distribution of strength in radial direction at the interface is inhomogeneous,and the central area of the interface performs greater bond strength than the peripheral area,which proves directly that the FexAly intermetallic compounds have a negative effect on the integration of interface.The morphology on the fracture surface shows that the facture in the central area at the interface has characteristic of the ductile micro-void facture.So it is important to restrain the form of the intermetallic compound to increase the bond strength of the Al 1050 and nodular cast iron by optimizing welding parameters and the geometry of components.展开更多
The principle and technological design of electroslag continuous casting (ESCC), including bifilar mode, T-shaped mould, and metal level detecting system, are detailed. Remelting was carded out for 1Crl8Ni9Ti stainl...The principle and technological design of electroslag continuous casting (ESCC), including bifilar mode, T-shaped mould, and metal level detecting system, are detailed. Remelting was carded out for 1Crl8Ni9Ti stainless steel with ESCC. The surface finish, chemical composition, macroand microstructures, and inclusions of the remelted billets were characterized. ESCC reduces the cost and increases the productivity in comparison to traditional ESR, while achieves comparably excellent products.展开更多
Construction of integrated database including casting shapes with their casting design, technical knowledge, and thermophysical properties of the casting alloys were introduced in the present study. Recognition tech- ...Construction of integrated database including casting shapes with their casting design, technical knowledge, and thermophysical properties of the casting alloys were introduced in the present study. Recognition tech- nique for casting design by industrial computer tomography was used for the construction of shape database. Technical knowledge of the casting processes such as ferrous and non-ferrous alloys and their manufacturing process of the castings were accumulated and the search engine for the knowledge was developed. Database of thermophysical properties of the casting alloys were obtained via the experimental study, and the properties were used for the in-house computer simulation of casting process. The databases were linked with intelligent casting expert system developed in center for e-design, KITECH. It is expected that the databases can help non casting experts to devise the casting and its process. Various examples of the application by using the databases were shown in the present study.展开更多
Rapid thick strip casting (RTSC) by Anton Hulek, Inventmetall, is an innovative concept for the production of hot strips with a final as-cast thickness of about 25 mm before rolling. The innovation of the mechanism ...Rapid thick strip casting (RTSC) by Anton Hulek, Inventmetall, is an innovative concept for the production of hot strips with a final as-cast thickness of about 25 mm before rolling. The innovation of the mechanism consists in a vertical mould performing a caterpillar motion. This moving mould has an unconventional parallelogram-shaped cross-section. The conventional rectangular shape is formed in the shaping machine, which is placed straight below the mould. Further elements of the technology are state-of-the-art. For the investigation of this new casting system theoretical calculations were complemented with practical experiments. The investigation focused mainly on two key aspects: the characteristics of the mould and the shaping process. For the practical analysis a static mould with three pairs of elements in laboratory scale was developed and commissioned by the Dept. of Ferrous Metallurgy @ RWTH Aachen University. The shaping experiments were carried out in model scale with two different materials and in variable boundary conditions. The results of these experiments delivered important mechanical as well as thermal informations about the casting system.展开更多
The control of suitable and stable height of liquid column is the crucial point to operate the electromagnetic casting(EMC) process and to obtain ingots with desirable shape and dimensional accuracy. But due to the co...The control of suitable and stable height of liquid column is the crucial point to operate the electromagnetic casting(EMC) process and to obtain ingots with desirable shape and dimensional accuracy. But due to the complicated interact parameters and special circumstances, the measure and control of liquid column are quite difficult. A fuzzy neural network was used to help control the liquid column by predicting its height on line. The results show that the stabilization of the height of liquid column and surface quality of the ingot are remarkably improved by using the neural network based control system.展开更多
文摘In this paper, an algorithm for simulating fluid flow and heat transfer for mold filling of shaped castings is presented. The main features of the algorithm include: 1) a simple but practical technique based on VOF method to determine free surface, 2) an explicit scheme of enthalpy to solve the energy equation more efficiently, and 3) an effective treatment to modify the flux deviation due to pressure iteration. In order to verify these methods, well controlled experiments have been repeatedly done with both water analog and gray iron pouring experiments to record the flow patterns and temperature variations. The calculated results are in accordance with the experimental ones. For the applications, the simulated initial temperature distribution right after mold filling was used to analyse subsequent solidification and to predict shrinkage defects. Actual castings were poured and tested in a foundry plant. The reuslts show that the defects predication with considering fluid flow effects is more precise than that without considering the effects.
基金This project is supported by Natural Science Foundation of China(No.59990470-3)Ford-China R &D Project(No.9715509)and Significant Fundamental Research Project of State Ministry of Science and Technology of China(No.G2000
文摘Facing the market economy and global challenge the development ofmanufacturing industry especially casting industry is critical to the national economy. To reformthe traditional casting industry by using computer technology is one of the hottest researchfrontiers studied by many researchers and engineers. Computer simulation of solidification processof shaped casting can assure the quality of casting, optimize the casting technology, shorten thelead time and therefore decrease the developing and manufacturing cost. Recently, numericalsimulation of mold-filling and solidification processes of shaped casting and prediction ofmicrostructure and property as well are extensively studied and put into application in many castingplants with many successful simulation cases.
文摘The effects of microalloying elements Ti,Sc,Zr and Er on grain refinement behaviors and hardness properties of wedge-shaped Al-Mg-Mn alloy castings were investigated. The results indicate that alloys containing Sc and Zr can remarkably reduce the grain sizes of Al-Mg-Mn castings. Combination of Sc,Zr and Er can completely eliminate the columnar dendritic grains and further obtain refined grains with nondendritic sub-structure;the whole wedge-shaped cross-section of the casting consequently exhibits more homogeneous cast structures instead of the typical tri-crystal region structures. Large amounts of Al3Sc-based intermetallic compound particles,such as Al3(Sc1-x,Zrx),Al3(Sc1-x,Tix),Al3(Sc1-x-y,Zrx,Tiy) and Al3(Sc1-x-y,Zrx,Ery) are present in the microalloyed alloys,resulting from their numerously forming in high-temperature melt before solidification. These phases have the same L12-type crystal structure to Al3Sc phase as well as smaller misfits with the primary α(Al) grains,which leads to more efficient epitaxial growth for α(Al) grains on all crystal planes of these composite phases. The experimental alloys have been hardened in different levels and,show the low susceptibilities of hardness change with varying cooling rate. The high hardness of the castings are caused by grain-refined strengthening and solid solution strengthening.
文摘The automobile suspension parts of a high strength 6xxx aluminum alloy were produced using a novel technique known as near net shape casting for forging stock preparation. Based on the outline dimension of the forging stock, the shape of the ingot was designed as the near net shape and its casting process was studied by the numerical simulation and experimental investigation. The results show that the shrinkage of the ingot was highly correlated to its shape parameters and could be successfully forecast by the stimulation model. The casting parameters of the near net shape ingot were optimized and the near net shape 6xxx aluminum alloy ingots free of defects were cast in the laboratory. In order to obtain high performance forged suspension parts, the hot compression tests of the ingot were carried out. The results show that the subgrain fraction of the forged ingot was strongly affected by Zener-Hollomon parameters (Z parameters). The intermediate Z parameters, 1.09×10^16 s^-1, will contribute to the larger number fraction of subgrains inside the forged ingot, which contributes to the high performance of the forged products.
文摘An anchor-shaped geometrical design for a Submerged Entry Nozzle for the slab continuous casting of steel is presented in this work. To evaluate its performance, transient 3D multiphase numerical simulations were carried out using the Computational Fluid Dynamics technique. The performance of the proposed nozzle is numerically compared with that of a conventional cylindrical nozzle. Computer results show that the chance of formation of Karman’s vortexes and powder entrapment becomes small for the anchor-shaped SEN.
基金financially supported by the National Basic Research"973"Program of China(2011CB610406)the National Natural Science Foundation for the Major International(Regional)Joint Research Project(51420105005)
文摘Vacuum pressurizing casting technique, providing better mould filling and inter-dendritic feeding, can reduce the porosity greatly in cast aluminum alloys, and improve the fatigue properties. The rotary bending fatigue properties of A356-T6 alloys prepared by vacuum pressurizing casting were investigated. The S-N curve and limit strength 90 MPa under fatigue life of 107 cycles were obtained. The analyses on the fatigue fractography and microstructure of specimens showed that the fatigue fracture mainly occurs at the positions with casting defects in the subsurface, especially at porosities regions, which attributed to the crack propagation during the fatigue fracture process. Using the empirical crack propagation law of Pairs-Erdogon, the quantitative relationship among the initial crack size, fatigue life and applied stress was established. The fatigue life decreases with an increase in initial crack size. Two constants in the Pairs-Erdogon equation of aluminum alloy A356-T6 were calculated using the experimental data.
文摘With the increasing use of aluminum shape castings in structural applications in the automotive and aerospace industries,assurance of cast product integrity and performance has become critical in both design and manufacturing.In this paper,the latest understanding of the relationship between casting quality and mechanical properties of aluminum castings is summarized.Newly developed technologies for alloy design,melting and melt treatment,casting and heat treatment processes in aluminum casting are reviewed.The mechanical properties of aluminum castings strongly depend upon their microstructure constituents and particularly cast defect population and distribution.To produce quality castings with quantifiable properties,the key is to control multi-scale defects and microstructure in the casting.Robust design and development of high integrity aluminum castings through Integrated Computational Materials Engineering(ICME) approach is also discussed.The most effective way to optimize the processes and achieve the desirable mechanical properties is through the development and exploitation of robust and accurate multi-scale computational models.
文摘According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15°(+15°) should be adopted, which will benefit the floatation of non-metallic inclusion and purification of the molten steel. When the nozzle angle is 120°, the flow pattern is reasonable. Proper nozzle depth can be 200mm. Turbulent kinetic of meniscus can be reduced by adopting the square nozzle and suitable area of side outlet when casting speed increases. The results are consistent with those of water model experiment, so the model is exact and reasonable. The model can provide important information for design of SEN and defining of immersion depth.
基金supported by the National Natural Science Foundation of China(No.51504020,and No.51404019)Beijing Key Laboratory of Green Recycling and Extraction of Metals(GREM)+1 种基金the Laboratory of Green Process Metallurgy and Modeling(GPM2)the High Quality Steel Consortium(HQSC)at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing(USTB),China
文摘Fluid flow, heat transfer and solidification of steel in the mold are so complex but crucial, determining the surface quality of the continuous casting slab. In the current study, a 2D numerical model was established by Fluent software to simulate the fluid flow, heat transfer and solidification of the steel in the mold. The VOF model and k-ε model were applied to simulate the flow field of the three phases(steel, slag and air), and solidification model was used to simulate the solidification process. The phenomena at the meniscus were also explored through interfacial tension between the liquid steel and slag as well as the mold oscillation. The model included a 20 mm thick mold to clarify the heat transfer and the temperature distribution of the mold. The simulation results show that the liquid steel flows as upper backflow and lower backflow in the mold, and that a small circulation forms at the meniscus. The liquid slag flows away from the corner at the meniscus or infiltrates into the gap between the mold and the shell with the mold oscillating at the negative strip stage or at the positive strip stage. The simulated pitch and the depth of oscillation marks approximate to the theoretical pitch and measured depth on the slab.
文摘The alpha-case formation reactions between Ti and investment molds (Al-2O-3,ZrSiO-4,ZrO-2,CaO stabilized ZrO-2) were evaluated in a plasma arc melting furnace.Regardless of thermodynamic approaches,there were distinct alpha-case formations.The reaction products were characterized by electron probe micro-analysis and transmission electron microscopy.Theα-case generation between Ti and Al-2O-3 mold was not able to be explained by the conventionalα-case formation mechanism,which is known to be formed by the interstitials,especially oxygen dissolved from mold materials.However,from our experimental results and thermodynamic calculations,it was confirmed that theα-case is formed not only by an interstitial element but also by substitutional metallic elements dissolved from mold materials.Our newly establishedα-case formation mechanism will surely lead to a variety of significant applications of theα-case controlled Ti casting.
基金financially supported by the National Natural Science Foundation of China(Grant No.51475120)the Project of Science and Technology of Henan Province of China(2018QNJH25,182102110096)
文摘The mold filling process of titanium alloy in a thin-walled cylinder cavity under vertical centrifugal casting process was studied by means of the hydraulic simulation experiments. Results show that the filling mode of the melt in the cylinder cavity varies with casting wall-thickness. When the casting wall-thickness is less than or equal to the thickness of the first layer during the filling process, the melts fill the cavity from the bottom to the top.When the casting wall-thickness is greater than the thickness of the first layer during the filling process, the melts first fill the largest radius parts of the cavity with a certain thickness of the first layer from the bottom to the top of the cavity, and then they fill the cavity from the larger radius part to the smaller radius part. The melt filling ability increases with the increment of the mold rotational speed and the pouring temperature. In another aspect, the melt filling ability rises with the decrement of the melt viscosity, and the melt with the better filling ability is prone to fill the cylinder cavity layer by layer.
基金Project supported by the985Program of Jilin University,China
文摘The morphology,size and composition of intermetallic compound at the interface of Al 1050 and nodular cast iron were studied by electron microprobe analysis(EMPA)and scan electron microscopy(SEM),respectively.The bond strength of the interface was measured by the tensile tests and the morphology of the fracture surface was observed by SEM.The observation of the interface reveals that there are two distinct morphologies:no intermetallic compound exists in the central area at the interface;while numbers of intermetallic compounds(FexAly)are formed in the peripheral area due to the overfull heat input.The tensile tests indicate that the distribution of strength in radial direction at the interface is inhomogeneous,and the central area of the interface performs greater bond strength than the peripheral area,which proves directly that the FexAly intermetallic compounds have a negative effect on the integration of interface.The morphology on the fracture surface shows that the facture in the central area at the interface has characteristic of the ductile micro-void facture.So it is important to restrain the form of the intermetallic compound to increase the bond strength of the Al 1050 and nodular cast iron by optimizing welding parameters and the geometry of components.
文摘The principle and technological design of electroslag continuous casting (ESCC), including bifilar mode, T-shaped mould, and metal level detecting system, are detailed. Remelting was carded out for 1Crl8Ni9Ti stainless steel with ESCC. The surface finish, chemical composition, macroand microstructures, and inclusions of the remelted billets were characterized. ESCC reduces the cost and increases the productivity in comparison to traditional ESR, while achieves comparably excellent products.
文摘Construction of integrated database including casting shapes with their casting design, technical knowledge, and thermophysical properties of the casting alloys were introduced in the present study. Recognition tech- nique for casting design by industrial computer tomography was used for the construction of shape database. Technical knowledge of the casting processes such as ferrous and non-ferrous alloys and their manufacturing process of the castings were accumulated and the search engine for the knowledge was developed. Database of thermophysical properties of the casting alloys were obtained via the experimental study, and the properties were used for the in-house computer simulation of casting process. The databases were linked with intelligent casting expert system developed in center for e-design, KITECH. It is expected that the databases can help non casting experts to devise the casting and its process. Various examples of the application by using the databases were shown in the present study.
文摘Rapid thick strip casting (RTSC) by Anton Hulek, Inventmetall, is an innovative concept for the production of hot strips with a final as-cast thickness of about 25 mm before rolling. The innovation of the mechanism consists in a vertical mould performing a caterpillar motion. This moving mould has an unconventional parallelogram-shaped cross-section. The conventional rectangular shape is formed in the shaping machine, which is placed straight below the mould. Further elements of the technology are state-of-the-art. For the investigation of this new casting system theoretical calculations were complemented with practical experiments. The investigation focused mainly on two key aspects: the characteristics of the mould and the shaping process. For the practical analysis a static mould with three pairs of elements in laboratory scale was developed and commissioned by the Dept. of Ferrous Metallurgy @ RWTH Aachen University. The shaping experiments were carried out in model scale with two different materials and in variable boundary conditions. The results of these experiments delivered important mechanical as well as thermal informations about the casting system.
文摘The control of suitable and stable height of liquid column is the crucial point to operate the electromagnetic casting(EMC) process and to obtain ingots with desirable shape and dimensional accuracy. But due to the complicated interact parameters and special circumstances, the measure and control of liquid column are quite difficult. A fuzzy neural network was used to help control the liquid column by predicting its height on line. The results show that the stabilization of the height of liquid column and surface quality of the ingot are remarkably improved by using the neural network based control system.