To date, many studies related to robots have been performed around the world. Many of these studies have assumed operation at locations where entry is difficult, such as disaster sites, and have focused on various ter...To date, many studies related to robots have been performed around the world. Many of these studies have assumed operation at locations where entry is difficult, such as disaster sites, and have focused on various terrestrial robots, such as snake-like, humanoid, spider-type, and wheeled units. Another area of active research in recent years has been aerial robots with small helicopters for operation indoors and outdoors. However,less research has been performed on robots that operate both on the ground and in the air. Accordingly, in this paper, we propose a hybrid aerial/terrestrial robot system. The proposed robot system was developed by equipping a quadcopter with a mechanism for ground movement. It does not use power dedicated to ground movement, and instead uses the flight mechanism of the quadcopter to achieve ground movement as well. Furthermore, we addressed the issue of obstacle avoidance as part of studies on autonomous control. Thus, we found that autonomous control of ground movement and flight was possible for the hybrid aerial/terrestrial robot system, as was autonomous obstacle avoidance by flight when an obstacle appeared during ground movement.展开更多
The robot pilot is a new concept of a robot system that pilots a manned aircraft,thereby forming a new type of unmanned aircraft system(UAS)that makes full use of the platform maturity,load capacity,and airworthiness ...The robot pilot is a new concept of a robot system that pilots a manned aircraft,thereby forming a new type of unmanned aircraft system(UAS)that makes full use of the platform maturity,load capacity,and airworthiness of existing manned aircraft while greatly expanding the operation and application fields of UASs.In this research,the implementation and advantages of the robot pilot concept are discussed in detail,and a helicopter robot pilot is proposed to fly manned helicopters.The robot manipulators are designed according to the handling characteristics of the helicopter-controlling mechanism.Based on a kinematic analysis of the robot manipulators,a direct-driving method is established for the robot flight controller to reduce the time delay and control error of the robot servo process.A supporting ground station is built to realize different flight modes and the functional integration of the robot pilot.Finally,a prototype of the helicopter robot pilot is processed and installed in a helicopter to carry out flight tests.The test results show that the robot pilot can independently fly the helicopter to realize forward flight,backward flight,side flight,and turning flight,which verifies the effectiveness of the helicopter robot pilot.展开更多
Robotic unmanned blimps own an enormous potential for applications in low-speed and low-altitude exploration, surveillance, and monitoring, as well as telecommunication relay platforms. To make lighter-than-air platfo...Robotic unmanned blimps own an enormous potential for applications in low-speed and low-altitude exploration, surveillance, and monitoring, as well as telecommunication relay platforms. To make lighter-than-air platform a robotic blimp with significant levels of autonomy, the decoupled longitude and latitude dynamic model is developed, and the hardware and software of the flight control system are designed and detailed. Flight control and navigation strategy and algorithms for waypoint flight problem are discussed. A result of flight experiment is also presented, which validates that the flight control system is applicable and initial machine intelligence of robotic blimp is achieved.展开更多
Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper pr...Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper proposes an autonomous formation flight control method for Large-sized Flapping-Wing Flying Robots(LFWFRs),which can enhance their search range and flight efficiency.First,the kinematics model for LFWFRs is established.Then,an autonomous flight controller based on this model is designed,which has multiple flight control modes,including attitude stabilization,course keeping,hovering,and so on.Second,a formation flight control method is proposed based on the leader–follower strategy and periodic characteristics of flapping-wing flight.The up and down fluctuation of the fuselage of each LFWFR during wing flapping is considered in the control algorithm to keep the relative distance,which overcomes the trajectory divergence caused by sensor delay and fuselage fluctuation.Third,typical formation flight modes are realized,including straight formation,circular formation,and switching formation.Finally,the outdoor formation flight experiment is carried out,and the proposed autonomous formation flight control method is verified in real environment.展开更多
Flapping-wing flying robots(FWFRs),especially large-scale robots,have unique advantages in flight efficiency,load capacity,and bionic hiding.Therefore,they have significant potential in environmental detection,disaste...Flapping-wing flying robots(FWFRs),especially large-scale robots,have unique advantages in flight efficiency,load capacity,and bionic hiding.Therefore,they have significant potential in environmental detection,disaster rescue,and anti-terrorism explosion monitoring.However,at present,most FWFRs are operated manually.Some have a certain autonomous ability limited to the cruise stage but not the complete flight cycle.These factors make an FWFR unable to give full play to the advantages of flapping-wing flight to perform autonomous flight tasks.This paper proposed an autonomous flight control method for FWFRs covering the complete process,including the takeoff,cruise,and landing stages.First,the flight characteristics of the mechanical structure of the robot are analyzed.Then,dedicated control strategies are designed following the different control requirements of the defined stages.Furthermore,a hybrid control law is presented by combining different control strategies and objectives.Finally,the proposed method and system are validated through outdoor flight experiments of the HIT-Hawk with a wingspan of 2.3 m,in which the control algorithm is integrated with an onboard embedded controller.The experimental results show that this robot can fly autonomously during the complete flight cycle.The mean value and root mean square(RMS)of the control error are less than 0.8409 and 3.054 m,respectively,when it flies around a circle in an annular area with a radius of 25 m and a width of 10 m.展开更多
文摘To date, many studies related to robots have been performed around the world. Many of these studies have assumed operation at locations where entry is difficult, such as disaster sites, and have focused on various terrestrial robots, such as snake-like, humanoid, spider-type, and wheeled units. Another area of active research in recent years has been aerial robots with small helicopters for operation indoors and outdoors. However,less research has been performed on robots that operate both on the ground and in the air. Accordingly, in this paper, we propose a hybrid aerial/terrestrial robot system. The proposed robot system was developed by equipping a quadcopter with a mechanism for ground movement. It does not use power dedicated to ground movement, and instead uses the flight mechanism of the quadcopter to achieve ground movement as well. Furthermore, we addressed the issue of obstacle avoidance as part of studies on autonomous control. Thus, we found that autonomous control of ground movement and flight was possible for the hybrid aerial/terrestrial robot system, as was autonomous obstacle avoidance by flight when an obstacle appeared during ground movement.
基金supported by the National Natural Science Foundation of China(11972059)。
文摘The robot pilot is a new concept of a robot system that pilots a manned aircraft,thereby forming a new type of unmanned aircraft system(UAS)that makes full use of the platform maturity,load capacity,and airworthiness of existing manned aircraft while greatly expanding the operation and application fields of UASs.In this research,the implementation and advantages of the robot pilot concept are discussed in detail,and a helicopter robot pilot is proposed to fly manned helicopters.The robot manipulators are designed according to the handling characteristics of the helicopter-controlling mechanism.Based on a kinematic analysis of the robot manipulators,a direct-driving method is established for the robot flight controller to reduce the time delay and control error of the robot servo process.A supporting ground station is built to realize different flight modes and the functional integration of the robot pilot.Finally,a prototype of the helicopter robot pilot is processed and installed in a helicopter to carry out flight tests.The test results show that the robot pilot can independently fly the helicopter to realize forward flight,backward flight,side flight,and turning flight,which verifies the effectiveness of the helicopter robot pilot.
基金Supported by National Natural Science Foundation of P.R.China(50405046,60605028)Shanghai Project of International Cooperation(045107031)the Program for Excellent Young Teachers of Shanghai(04YOHB094)
基金This project is supported by National Natural Science Foundation of China (No. 50405046, No. 60605028)Program for Excellent Young Teachers of Shanghai, China (No. 04Y0HB094)+1 种基金State Leading Academic Discipline Fund of China (No. Y0102)Provincial Leading Academic Discipline Fund of Shanghai, China (No. BB67).
文摘Robotic unmanned blimps own an enormous potential for applications in low-speed and low-altitude exploration, surveillance, and monitoring, as well as telecommunication relay platforms. To make lighter-than-air platform a robotic blimp with significant levels of autonomy, the decoupled longitude and latitude dynamic model is developed, and the hardware and software of the flight control system are designed and detailed. Flight control and navigation strategy and algorithms for waypoint flight problem are discussed. A result of flight experiment is also presented, which validates that the flight control system is applicable and initial machine intelligence of robotic blimp is achieved.
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.62233001)Shenzhen excellent scientific and technological innovation talent training project(Grant No.RCJC20200714114436040)the Basic Research Program of Shenzhen(Grant No.JCYJ20190806142816524).
文摘Birds in nature exhibit excellent long-distance flight capabilities through formation flight,which could reduce energy consumption and improve flight efficiency.Inspired by the biological habits of birds,this paper proposes an autonomous formation flight control method for Large-sized Flapping-Wing Flying Robots(LFWFRs),which can enhance their search range and flight efficiency.First,the kinematics model for LFWFRs is established.Then,an autonomous flight controller based on this model is designed,which has multiple flight control modes,including attitude stabilization,course keeping,hovering,and so on.Second,a formation flight control method is proposed based on the leader–follower strategy and periodic characteristics of flapping-wing flight.The up and down fluctuation of the fuselage of each LFWFR during wing flapping is considered in the control algorithm to keep the relative distance,which overcomes the trajectory divergence caused by sensor delay and fuselage fluctuation.Third,typical formation flight modes are realized,including straight formation,circular formation,and switching formation.Finally,the outdoor formation flight experiment is carried out,and the proposed autonomous formation flight control method is verified in real environment.
基金supported by the National Natural Science Foundation of China(Grant No.62233001)the Program of Shenzhen Peacock Innovation Team(Grant No.KQTD20210811090146075)Shenzhen Excellent Scientific and Technological Innovation Talent Training Project(Grant No.RCJC20200714114436040)。
文摘Flapping-wing flying robots(FWFRs),especially large-scale robots,have unique advantages in flight efficiency,load capacity,and bionic hiding.Therefore,they have significant potential in environmental detection,disaster rescue,and anti-terrorism explosion monitoring.However,at present,most FWFRs are operated manually.Some have a certain autonomous ability limited to the cruise stage but not the complete flight cycle.These factors make an FWFR unable to give full play to the advantages of flapping-wing flight to perform autonomous flight tasks.This paper proposed an autonomous flight control method for FWFRs covering the complete process,including the takeoff,cruise,and landing stages.First,the flight characteristics of the mechanical structure of the robot are analyzed.Then,dedicated control strategies are designed following the different control requirements of the defined stages.Furthermore,a hybrid control law is presented by combining different control strategies and objectives.Finally,the proposed method and system are validated through outdoor flight experiments of the HIT-Hawk with a wingspan of 2.3 m,in which the control algorithm is integrated with an onboard embedded controller.The experimental results show that this robot can fly autonomously during the complete flight cycle.The mean value and root mean square(RMS)of the control error are less than 0.8409 and 3.054 m,respectively,when it flies around a circle in an annular area with a radius of 25 m and a width of 10 m.