A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the mai...A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the main influence on day-ahead price, avoiding the strong correlation between the input factors that might influence electricity price, such as the load of the forecasting hour, other history loads and prices, weather and temperature; then GRNN was employed to forecast electricity price according to the main information extracted by PCA. To prove the efficiency of the combined model, a case from PJM (Pennsylvania-New Jersey-Maryland) day-ahead electricity market was evaluated. Compared to back-propagation (BP) neural network and standard GRNN, the combined method reduces the mean absolute percentage error about 3%.展开更多
A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural n...A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy.展开更多
Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of gre...Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of great importance during the optimization procedure.In this paper,an improved generalized regression neural network(GRNN)optimized by fruit fly optimization algorithm(FOA)is proposed for the modeling of SRM that represent the relationship of torque ripple and efficiency with the optimization variables,stator pole arc,rotor pole arc and rotor yoke height.Finite element parametric analysis technology is used to obtain the sample data for GRNN training and verification.Comprehensive comparisons and analysis among back propagation neural network(BPNN),radial basis function neural network(RBFNN),extreme learning machine(ELM)and GRNN is made to test the effectiveness and superiority of FOA-GRNN.展开更多
The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding t...The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding to climate change policy.Through the analysis of the application of the generalized regression neural network(GRNN)in prediction,this paper improved the prediction method of GRNN.Genetic algorithm(GA)was adopted to search the optimal smooth factor as the only factor of GRNN,which was then used for prediction in GRNN.During the prediction of carbon dioxide emissions using the improved method,the increments of data were taken into account.The target values were obtained after the calculation of the predicted results.Finally,compared with the results of GRNN,the improved method realized higher prediction accuracy.It thus offers a new way of predicting total carbon dioxide emissions,and the prediction results can provide macroscopic guidance and decision-making reference for China’s environmental protection and trading of carbon emissions.展开更多
In robot-assisted surgery projects,researchers should be able to make fast 3D reconstruction. Usually 2D images acquired with common diagnostic equipments such as UT, CT and MRI are not enough and complete for an accu...In robot-assisted surgery projects,researchers should be able to make fast 3D reconstruction. Usually 2D images acquired with common diagnostic equipments such as UT, CT and MRI are not enough and complete for an accurate 3D reconstruction. There are some interpolation methods for approximating non value voxels which consume large execution time. A novel algorithm is introduced based on generalized regression neural network (GRNN) which can interpolate unknown voxles fast and reliable. The GRNN interpolation is used to produce new 2D images between each two succeeding ultrasonic images. It is shown that the composition of GRNN with image distance transformation can produce higher quality 3D shapes. The results of this method are compared with other interpolation methods practically. It shows this method can decrease overall time consumption on online 3D reconstruction.展开更多
As a useful alternative of Shewhart control chart, exponentially weighted moving average (EWMA) control chat has been applied widely to quality control, process monitoring, forecast, etc. In this paper, a method was...As a useful alternative of Shewhart control chart, exponentially weighted moving average (EWMA) control chat has been applied widely to quality control, process monitoring, forecast, etc. In this paper, a method was introduced for optimal design of EWMA and multivariate EWMA (MEWMA) control charts, in which the optimal parameter pair ( λ, k) or ( λ, h ) was searched by using the generalized regression neural network (GRNN). The results indicate that the optimal parameter pair can be obtained effectively by the proposed strategy for a given in-control average running length (ARLo) and shift to detect under any conditions, removing the drawback of incompleteness existing in the tables that had been reported.展开更多
Monitoring of rangeland forage production at specified spatial and temporal scales is necessary for grazing management and also for implementation of rehabilitation projects in rangelands. This study focused on the ca...Monitoring of rangeland forage production at specified spatial and temporal scales is necessary for grazing management and also for implementation of rehabilitation projects in rangelands. This study focused on the capability of a generalized regression neural network(GRNN) model combined with GIS techniques to explore the impact of climate change on rangeland forage production. Specifically, a dataset of 115 monitored records of forage production were collected from 16 rangeland sites during the period 1998–2007 in Isfahan Province, Central Iran. Neural network models were designed using the monitored forage production values and available environmental data(including climate and topography data), and the performance of each network model was assessed using the mean estimation error(MEE), model efficiency factor(MEF), and correlation coefficient(r). The best neural network model was then selected and further applied to predict the forage production of rangelands in the future(in 2030 and 2080) under A1 B climate change scenario using Hadley Centre coupled model. The present and future forage production maps were also produced. Rangeland forage production exhibited strong correlations with environmental factors, such as slope, elevation, aspect and annual temperature. The present forage production in the study area varied from 25.6 to 574.1 kg/hm^2. Under climate change scenario, the annual temperature was predicted to increase and the annual precipitation was predicted to decrease. The prediction maps of forage production in the future indicated that the area with low level of forage production(0–100 kg/hm^2) will increase while the areas with moderate, moderately high and high levels of forage production(≥100 kg/hm^2) will decrease both in 2030 and in 2080, which may be attributable to the increasing annual temperature and decreasing annual precipitation. It was predicted that forage production of rangelands will decrease in the next couple of decades, especially in the western and southern parts of Isfahan Province. These changes are more pronounced in elevations between 2200 and 2900 m. Therefore, rangeland managers have to cope with these changes by holistic management approaches through mitigation and human adaptations.展开更多
Traditional methods for water table prediction have such defects as extensive calculation and reliance on the presupposition of a homogeneous and regular aquifer.Based on the fundamentals of the general regression neu...Traditional methods for water table prediction have such defects as extensive calculation and reliance on the presupposition of a homogeneous and regular aquifer.Based on the fundamentals of the general regression neural network(GRNN),this article sets up a GRNN model for water level prediction.Case study indicates that this model,even with limited information,has satisfactory prediction accuracy,which,coupled with a simple model structure and relatively high calculation efficiency,mean a vast application prospect for the model.展开更多
A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from ...A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks.展开更多
Taking advantage of the lateral line organ, fish can navigate, feed, and avoid predators and obstacles by sensing surrounding flow fields. The lateral line organ provides an important reference for the development of ...Taking advantage of the lateral line organ, fish can navigate, feed, and avoid predators and obstacles by sensing surrounding flow fields. The lateral line organ provides an important reference for the development of new underwater detection technology. Inspired by the lateral line organ, in this paper, for the sake of localizing the target dipole source in three-dimensional underwater space, an artificial lateral line consisting of nine underwater pressure sensors forming a cross-shaped sensor array is applied. Combined with the method of gener- alized regression neural network, which is suitable for solving nonlinear pattern recognition problems, a corresponding experimental platform has been built to sample data for training the neural network from a 12 cm by 12 cm by 24 cm cuboid space. The experimental results indicate that the cross-shaped artificial lateral line can localize the target dipole source two body-lengths away. The well- performing perceptual distance is below 13 cm away from the sensing array. Moreover, decreasing the data sampling interval and in- creasing the number of sensors utilized can help improve the positioning accuracy.展开更多
Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity...Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity of influential factors and strong randomness.This paper proposes a short-term load forecasting model for regional distribution network combining the maximum information coefficient,factor analysis,gray wolf optimization,and generalized regression neural network(MIC-FA-GWO-GRNN).To screen and decrease the dimension of the multiple-input features of the short-term load forecasting model,MIC is first used to quantify the non-linear correlation between the load and input features,and to eliminate the ineffective features,and then FA is used to reduce the dimension of the screened input features on the premise of preserving the main information of input features.After that the high-precision short-term丨oad forecasting based on GWO-GRNN model is realized.GRNN is used to regressively analyze the input features after screening and dimension reduction,and the parameter of GRNN is optimized by using the GWO,which has strong global searching ability and fast convergence.Finally a case study of a regional distribution network in Tianjin,China verifies the accuracy and applicability of the proposed forecasting model.展开更多
With the rapid growth of satellite traffic, the ability to forecast traffic loads becomes vital for improving data transmission efficiency and resource management in satellite networks. To precisely forecast the short...With the rapid growth of satellite traffic, the ability to forecast traffic loads becomes vital for improving data transmission efficiency and resource management in satellite networks. To precisely forecast the short-term traffic loads in satellite networks, a forecasting algorithm based on principal component analysis and a generalized regression neural network (PCA-GRNN) is proposed. The PCA-GRNN algorithm exploits the hidden regularity of satellite networks and fully considers both the temporal and spatial correlations of satellite traffic. Specifically, it selects optimal time series of spatio-temporally correlated historical traffic from satellites as forecasting inputs and applies principal component analysis to reduce the input dimensions while preserving the main features of the data. Then, a generalized regression neural network is utilized to perform the final short-term load forecasting based on the obtained principal components. The PCA-GRNN algorithm is evaluated based on real-world traffic traces, and the results show that the PCA-GRNN method achieves a higher forecasting accuracy, has a shorter training time and is more robust than other state-of-the-art algorithms, even for incomplete traffic datasets. Therefore, the PCA- GRNN algorithm can be regarded as a preferred solution for use in real-time traffic forecasting for realistic satellite networks.展开更多
Computer-based quantitative structure-activity relationship (QSAR) model has been becoming a pow- erful tool in understanding the structural requirements for chemicals to bind the estrogen receptor (ER), designing dru...Computer-based quantitative structure-activity relationship (QSAR) model has been becoming a pow- erful tool in understanding the structural requirements for chemicals to bind the estrogen receptor (ER), designing drugs for human estrogen replacement therapy, and identifying potential estrogenic endo- crine disruptors. In this study, a simple yet powerful neural network technique, generalized regression neural network (GRNN) was used to develop a QSAR model based on 131 structurally diverse estro- gens (training set). Only nine descriptors calculated solely from the molecular structures of com- pounds selected by objective and subjective feature selections were used as inputs of the GRNN model. The predictive power of the built model was found to be comparable to that of the more traditional techniques but requiring significantly easy implementation and a shorter computation-time. The ob- tained result indicates that the proposed GRNN model is robust and satisfactory, and can provide a feasible and practical tool for the rapid screening of the estrogenic activity of organic compounds.展开更多
In light of the nonlinear approaching capability of artificial neural networks ( ANN), the term structure of interest rates is predicted using The generalized regression neural network (GRNN) and back propagation ...In light of the nonlinear approaching capability of artificial neural networks ( ANN), the term structure of interest rates is predicted using The generalized regression neural network (GRNN) and back propagation (BP) neural networks models. The prediction performance is measured with US interest rate data. Then, RBF and BP models are compared with Vasicek's model and Cox-Ingersoll-Ross (CIR) model. The comparison reveals that neural network models outperform Vasicek's model and CIR model, which are more precise and closer to the real market situation.展开更多
制冷度日数(Cooling degree days,CDDs)可指示空间制冷能耗与室外热环境,但在全球栅格尺度上同时考虑气温、相对湿度与人口的CDDs分析鲜见报道。据此,本文利用气象、人口、遥感等数据,曼−肯德尔法、相对重要性分析、机器学习等方法在全...制冷度日数(Cooling degree days,CDDs)可指示空间制冷能耗与室外热环境,但在全球栅格尺度上同时考虑气温、相对湿度与人口的CDDs分析鲜见报道。据此,本文利用气象、人口、遥感等数据,曼−肯德尔法、相对重要性分析、机器学习等方法在全球0.25°栅格尺度上开展气温−相对湿度−人口驱动型CDDs时空变化、影响因素与模拟研究。结果表明,①全球基于湿球温度计算的CDDs(CDDs_(wb),CDDs based on wet bulb temperature)在30°N~30°S间除北非与西亚外的不少地区均高于567(℃·d),极高值[1469~2677(℃·d)]主要分布在亚马孙平原、东南亚中南半岛南侧及其以南地区。基于湿球温度与人口计算的CDDs(CDDs based on wet bulb temperature and population,CDDs_(wb_pop))大多低于17×10^(6)(℃·d·人),高值[277×10^(6)~2144×10^(6)(℃·d·人)]主要在恒河平原与印度南端、尼日利亚沿海、越南南北平原与爪哇岛。②1970—2018年CDDs_(wb)与2000—2018年CDDs_(wb_pop)在中高纬度呈现极高年际间变异,全球未来变化趋势多与过去保持强一致性。CDDs_(wb)显著增加(P<0.05)地区主要分布在北非与西亚、澳大利亚、里海东部、印尼西部的一些地区,显著降低区域主要分布在拉美、撒哈拉以南非洲、中国胡焕庸线以南及中南半岛的一些地区。CDDs_(wb_pop)在一些地区显著增加,速率基本小于8×10^(6)(℃·d·人)/a,集中发布在北非、西亚与里海东部的一些地区。③纬度与高程均分别与CDDs_(wb)及其变异系数呈现显著负向与正向偏相关关系(P<0.05);在不同大洲内,年降水量、夏季反照率、增强型植被指数与PM_(2.5)对CDDs_(wb)影响不同,夜间灯光影响不大。CDDs_(wb)实际值与模拟值间R2大多高于0.935,平均绝对误差百分比多小于6.77%,均方根误差在15.63~184.51(℃·d)。展开更多
基金Project(70671039) supported by the National Natural Science Foundation of China
文摘A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the main influence on day-ahead price, avoiding the strong correlation between the input factors that might influence electricity price, such as the load of the forecasting hour, other history loads and prices, weather and temperature; then GRNN was employed to forecast electricity price according to the main information extracted by PCA. To prove the efficiency of the combined model, a case from PJM (Pennsylvania-New Jersey-Maryland) day-ahead electricity market was evaluated. Compared to back-propagation (BP) neural network and standard GRNN, the combined method reduces the mean absolute percentage error about 3%.
文摘A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy.
基金This work was supported in part by the National Natural Science Foundation of China under Grant61503132 and Grant51477047the Hunan Provincial Natural Science Foundation of China under Grant2015JJ5029.
文摘Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of great importance during the optimization procedure.In this paper,an improved generalized regression neural network(GRNN)optimized by fruit fly optimization algorithm(FOA)is proposed for the modeling of SRM that represent the relationship of torque ripple and efficiency with the optimization variables,stator pole arc,rotor pole arc and rotor yoke height.Finite element parametric analysis technology is used to obtain the sample data for GRNN training and verification.Comprehensive comparisons and analysis among back propagation neural network(BPNN),radial basis function neural network(RBFNN),extreme learning machine(ELM)and GRNN is made to test the effectiveness and superiority of FOA-GRNN.
文摘The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding to climate change policy.Through the analysis of the application of the generalized regression neural network(GRNN)in prediction,this paper improved the prediction method of GRNN.Genetic algorithm(GA)was adopted to search the optimal smooth factor as the only factor of GRNN,which was then used for prediction in GRNN.During the prediction of carbon dioxide emissions using the improved method,the increments of data were taken into account.The target values were obtained after the calculation of the predicted results.Finally,compared with the results of GRNN,the improved method realized higher prediction accuracy.It thus offers a new way of predicting total carbon dioxide emissions,and the prediction results can provide macroscopic guidance and decision-making reference for China’s environmental protection and trading of carbon emissions.
文摘In robot-assisted surgery projects,researchers should be able to make fast 3D reconstruction. Usually 2D images acquired with common diagnostic equipments such as UT, CT and MRI are not enough and complete for an accurate 3D reconstruction. There are some interpolation methods for approximating non value voxels which consume large execution time. A novel algorithm is introduced based on generalized regression neural network (GRNN) which can interpolate unknown voxles fast and reliable. The GRNN interpolation is used to produce new 2D images between each two succeeding ultrasonic images. It is shown that the composition of GRNN with image distance transformation can produce higher quality 3D shapes. The results of this method are compared with other interpolation methods practically. It shows this method can decrease overall time consumption on online 3D reconstruction.
基金Funded by the National Key Technologies R&D Programs of China (No.2002BA105C)
文摘As a useful alternative of Shewhart control chart, exponentially weighted moving average (EWMA) control chat has been applied widely to quality control, process monitoring, forecast, etc. In this paper, a method was introduced for optimal design of EWMA and multivariate EWMA (MEWMA) control charts, in which the optimal parameter pair ( λ, k) or ( λ, h ) was searched by using the generalized regression neural network (GRNN). The results indicate that the optimal parameter pair can be obtained effectively by the proposed strategy for a given in-control average running length (ARLo) and shift to detect under any conditions, removing the drawback of incompleteness existing in the tables that had been reported.
文摘Monitoring of rangeland forage production at specified spatial and temporal scales is necessary for grazing management and also for implementation of rehabilitation projects in rangelands. This study focused on the capability of a generalized regression neural network(GRNN) model combined with GIS techniques to explore the impact of climate change on rangeland forage production. Specifically, a dataset of 115 monitored records of forage production were collected from 16 rangeland sites during the period 1998–2007 in Isfahan Province, Central Iran. Neural network models were designed using the monitored forage production values and available environmental data(including climate and topography data), and the performance of each network model was assessed using the mean estimation error(MEE), model efficiency factor(MEF), and correlation coefficient(r). The best neural network model was then selected and further applied to predict the forage production of rangelands in the future(in 2030 and 2080) under A1 B climate change scenario using Hadley Centre coupled model. The present and future forage production maps were also produced. Rangeland forage production exhibited strong correlations with environmental factors, such as slope, elevation, aspect and annual temperature. The present forage production in the study area varied from 25.6 to 574.1 kg/hm^2. Under climate change scenario, the annual temperature was predicted to increase and the annual precipitation was predicted to decrease. The prediction maps of forage production in the future indicated that the area with low level of forage production(0–100 kg/hm^2) will increase while the areas with moderate, moderately high and high levels of forage production(≥100 kg/hm^2) will decrease both in 2030 and in 2080, which may be attributable to the increasing annual temperature and decreasing annual precipitation. It was predicted that forage production of rangelands will decrease in the next couple of decades, especially in the western and southern parts of Isfahan Province. These changes are more pronounced in elevations between 2200 and 2900 m. Therefore, rangeland managers have to cope with these changes by holistic management approaches through mitigation and human adaptations.
文摘Traditional methods for water table prediction have such defects as extensive calculation and reliance on the presupposition of a homogeneous and regular aquifer.Based on the fundamentals of the general regression neural network(GRNN),this article sets up a GRNN model for water level prediction.Case study indicates that this model,even with limited information,has satisfactory prediction accuracy,which,coupled with a simple model structure and relatively high calculation efficiency,mean a vast application prospect for the model.
基金Project supported by the National Major Science and Technology Foundation of China during the 10th Five-Year Plan Period(No.2001BA204B05-KHK Z0009)
文摘A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks.
基金The author appreciates the support of the National Natural Science Foundation of China (Grant Nos. 51675528 and 51605482 as well as the National Key R&D Program of China (Grant No. 2016YFF0203400). The author also thanks Kehong Lv and Peng Yang for guiding in the design of the experimental platform. Besides, the author thanks Qin Wang and Bailiang Chen for assisting in the fabrication of the sensor array and the experimental platform.
文摘Taking advantage of the lateral line organ, fish can navigate, feed, and avoid predators and obstacles by sensing surrounding flow fields. The lateral line organ provides an important reference for the development of new underwater detection technology. Inspired by the lateral line organ, in this paper, for the sake of localizing the target dipole source in three-dimensional underwater space, an artificial lateral line consisting of nine underwater pressure sensors forming a cross-shaped sensor array is applied. Combined with the method of gener- alized regression neural network, which is suitable for solving nonlinear pattern recognition problems, a corresponding experimental platform has been built to sample data for training the neural network from a 12 cm by 12 cm by 24 cm cuboid space. The experimental results indicate that the cross-shaped artificial lateral line can localize the target dipole source two body-lengths away. The well- performing perceptual distance is below 13 cm away from the sensing array. Moreover, decreasing the data sampling interval and in- creasing the number of sensors utilized can help improve the positioning accuracy.
基金supported by the National Key Research and Development Program of China(2017YFB0903300)Research Program of State Grid Corporation of China(SGTYHT/16-JS-198)the National Natural Science Foundation of China(51807134).
文摘Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity of influential factors and strong randomness.This paper proposes a short-term load forecasting model for regional distribution network combining the maximum information coefficient,factor analysis,gray wolf optimization,and generalized regression neural network(MIC-FA-GWO-GRNN).To screen and decrease the dimension of the multiple-input features of the short-term load forecasting model,MIC is first used to quantify the non-linear correlation between the load and input features,and to eliminate the ineffective features,and then FA is used to reduce the dimension of the screened input features on the premise of preserving the main information of input features.After that the high-precision short-term丨oad forecasting based on GWO-GRNN model is realized.GRNN is used to regressively analyze the input features after screening and dimension reduction,and the parameter of GRNN is optimized by using the GWO,which has strong global searching ability and fast convergence.Finally a case study of a regional distribution network in Tianjin,China verifies the accuracy and applicability of the proposed forecasting model.
基金supported by the National Natural Science Fundation for Distinguished Young Scholars ( 61425012 )the Fundamental Research Funds for the Central Universities of China ( 2014PTB-00-02)
文摘With the rapid growth of satellite traffic, the ability to forecast traffic loads becomes vital for improving data transmission efficiency and resource management in satellite networks. To precisely forecast the short-term traffic loads in satellite networks, a forecasting algorithm based on principal component analysis and a generalized regression neural network (PCA-GRNN) is proposed. The PCA-GRNN algorithm exploits the hidden regularity of satellite networks and fully considers both the temporal and spatial correlations of satellite traffic. Specifically, it selects optimal time series of spatio-temporally correlated historical traffic from satellites as forecasting inputs and applies principal component analysis to reduce the input dimensions while preserving the main features of the data. Then, a generalized regression neural network is utilized to perform the final short-term load forecasting based on the obtained principal components. The PCA-GRNN algorithm is evaluated based on real-world traffic traces, and the results show that the PCA-GRNN method achieves a higher forecasting accuracy, has a shorter training time and is more robust than other state-of-the-art algorithms, even for incomplete traffic datasets. Therefore, the PCA- GRNN algorithm can be regarded as a preferred solution for use in real-time traffic forecasting for realistic satellite networks.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20507008 and 20737001)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK200418)the National Basic Research Program of China (973 Program)(Grant No. 2003CB415002)
文摘Computer-based quantitative structure-activity relationship (QSAR) model has been becoming a pow- erful tool in understanding the structural requirements for chemicals to bind the estrogen receptor (ER), designing drugs for human estrogen replacement therapy, and identifying potential estrogenic endo- crine disruptors. In this study, a simple yet powerful neural network technique, generalized regression neural network (GRNN) was used to develop a QSAR model based on 131 structurally diverse estro- gens (training set). Only nine descriptors calculated solely from the molecular structures of com- pounds selected by objective and subjective feature selections were used as inputs of the GRNN model. The predictive power of the built model was found to be comparable to that of the more traditional techniques but requiring significantly easy implementation and a shorter computation-time. The ob- tained result indicates that the proposed GRNN model is robust and satisfactory, and can provide a feasible and practical tool for the rapid screening of the estrogenic activity of organic compounds.
基金National Natural Science Foundation of China (No.70471051 & No.70671074)
文摘In light of the nonlinear approaching capability of artificial neural networks ( ANN), the term structure of interest rates is predicted using The generalized regression neural network (GRNN) and back propagation (BP) neural networks models. The prediction performance is measured with US interest rate data. Then, RBF and BP models are compared with Vasicek's model and Cox-Ingersoll-Ross (CIR) model. The comparison reveals that neural network models outperform Vasicek's model and CIR model, which are more precise and closer to the real market situation.
文摘制冷度日数(Cooling degree days,CDDs)可指示空间制冷能耗与室外热环境,但在全球栅格尺度上同时考虑气温、相对湿度与人口的CDDs分析鲜见报道。据此,本文利用气象、人口、遥感等数据,曼−肯德尔法、相对重要性分析、机器学习等方法在全球0.25°栅格尺度上开展气温−相对湿度−人口驱动型CDDs时空变化、影响因素与模拟研究。结果表明,①全球基于湿球温度计算的CDDs(CDDs_(wb),CDDs based on wet bulb temperature)在30°N~30°S间除北非与西亚外的不少地区均高于567(℃·d),极高值[1469~2677(℃·d)]主要分布在亚马孙平原、东南亚中南半岛南侧及其以南地区。基于湿球温度与人口计算的CDDs(CDDs based on wet bulb temperature and population,CDDs_(wb_pop))大多低于17×10^(6)(℃·d·人),高值[277×10^(6)~2144×10^(6)(℃·d·人)]主要在恒河平原与印度南端、尼日利亚沿海、越南南北平原与爪哇岛。②1970—2018年CDDs_(wb)与2000—2018年CDDs_(wb_pop)在中高纬度呈现极高年际间变异,全球未来变化趋势多与过去保持强一致性。CDDs_(wb)显著增加(P<0.05)地区主要分布在北非与西亚、澳大利亚、里海东部、印尼西部的一些地区,显著降低区域主要分布在拉美、撒哈拉以南非洲、中国胡焕庸线以南及中南半岛的一些地区。CDDs_(wb_pop)在一些地区显著增加,速率基本小于8×10^(6)(℃·d·人)/a,集中发布在北非、西亚与里海东部的一些地区。③纬度与高程均分别与CDDs_(wb)及其变异系数呈现显著负向与正向偏相关关系(P<0.05);在不同大洲内,年降水量、夏季反照率、增强型植被指数与PM_(2.5)对CDDs_(wb)影响不同,夜间灯光影响不大。CDDs_(wb)实际值与模拟值间R2大多高于0.935,平均绝对误差百分比多小于6.77%,均方根误差在15.63~184.51(℃·d)。