An analytical solution is presented for the rotation problem of a two-layer composite elastic cylinder under a plane strain assumption. The external cylinder has variable-thickness formulation, and is made of a hetero...An analytical solution is presented for the rotation problem of a two-layer composite elastic cylinder under a plane strain assumption. The external cylinder has variable-thickness formulation, and is made of a heterogeneous orthotropic material. It contains a fiber-reinforced viscoelastic homogeneous isotropic solid core of uniform thickness. The thickness and elastic properties of the external cylinder are taken as power functions of the radial direction. By the boundary and continuity conditions, the radial displacement and stresses for the rotating composite cylinder are determined. The effective moduli and Illyushin's approximation methods are used to obtain the viscoelastic solution to the problem. The effects of heterogeneity, thickness variation, constitutive, time parameters on the radial displacement, and stresses are investigated.展开更多
文摘An analytical solution is presented for the rotation problem of a two-layer composite elastic cylinder under a plane strain assumption. The external cylinder has variable-thickness formulation, and is made of a heterogeneous orthotropic material. It contains a fiber-reinforced viscoelastic homogeneous isotropic solid core of uniform thickness. The thickness and elastic properties of the external cylinder are taken as power functions of the radial direction. By the boundary and continuity conditions, the radial displacement and stresses for the rotating composite cylinder are determined. The effective moduli and Illyushin's approximation methods are used to obtain the viscoelastic solution to the problem. The effects of heterogeneity, thickness variation, constitutive, time parameters on the radial displacement, and stresses are investigated.