The flow between two coaxial conical cylinders is numerically studied for two different configurations, with the inner cone rotating and the outer one at rest. It is found that, in one configuration,at least at a smal...The flow between two coaxial conical cylinders is numerically studied for two different configurations, with the inner cone rotating and the outer one at rest. It is found that, in one configuration,at least at a small Reynolds number(Re), the pressure is a decreasing function of z while in the other configuration, it is an increasing function of z. In the first configuration, the pressure curves for different Re have intersections, while in the second configuration they do not. The gap between two conical cylinders is filled with six pairs of Taylor vortices at about the same Reynolds number and in each pair of vortices in the first configuration, the upper vortex is larger than the bottom one while in the second configuration, the bottom vortex is larger than the upper one.展开更多
文摘The flow between two coaxial conical cylinders is numerically studied for two different configurations, with the inner cone rotating and the outer one at rest. It is found that, in one configuration,at least at a small Reynolds number(Re), the pressure is a decreasing function of z while in the other configuration, it is an increasing function of z. In the first configuration, the pressure curves for different Re have intersections, while in the second configuration they do not. The gap between two conical cylinders is filled with six pairs of Taylor vortices at about the same Reynolds number and in each pair of vortices in the first configuration, the upper vortex is larger than the bottom one while in the second configuration, the bottom vortex is larger than the upper one.