It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low an...It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.展开更多
BACKGROUND Adolescent idiopathic scoliosis remains a major problem due to its high incidence,high risk,and high cost.One of the aims of the management in scoliosis is to correct the deformity.Many techniques are avail...BACKGROUND Adolescent idiopathic scoliosis remains a major problem due to its high incidence,high risk,and high cost.One of the aims of the management in scoliosis is to correct the deformity.Many techniques are available to correct scoliosis deformity;however,they are all far from ideal to achieve three-dimensional correction in scoliosis.AIM To develop a set of tools named Scoliocorrector Fatma-UI(SCFUI)to aid threedimensional correction and to evaluate the efficacy,safety,and functional outcome.METHODS This study consists of two stages.In the first stage,we developed the SCFUI and tested it in finite element and biomechanical tests.The second stage was a single-blinded randomized clinical trial to evaluate the SCFUI compared to direct vertebral rotation(DVR).Forty-four subjects with adolescent idiopathic scoliosis were randomly allocated into the DVR group(n=23)and SCFUI group(n=21).Radiological,neurological,and functional outcome was compared between the groups.RESULTS Finite element revealed the maximum stress of the SCFUI components to be between 31.2-252 MPa.Biomechanical analysis revealed the modulus elasticity of SCFUI was 9561324±633277 MPa.Both groups showed improvement in Cobb angle and sagittal profile,however the rotation angle was lower in the SCFUI group(11.59±7.46 vs 18.23±6.39,P=0.001).Neurological and functional outcome were comparable in both groups.CONCLUSION We concluded that SCFUI developed in this study resulted in similar coronal and sagittal but better rotational correction compared to DVR.The safety and functional outcomes were also similar to DVR.展开更多
The attosecond ionization dynamics of atoms has attracted extensive attention in these days.However,the role of the initial state is not clearly understood.To address this question,we perform simulations on the neon a...The attosecond ionization dynamics of atoms has attracted extensive attention in these days.However,the role of the initial state is not clearly understood.To address this question,we perform simulations on the neon atom and its model atom with different initial states by numerically solving the corresponding two-dimensional time-dependent Schrodinger¨equations.We theoretically investigate atomic photoelectron momentum distributions(PMDs)by a pair of elliptically polarized attosecond laser pulses.We find that the PMD is sensitive not only to the ellipticities of the pulses,the relative helicity,and time delay of the pulses,but also to the symmetry of the initial electronic states.Results are analyzed by the first-order time-dependent perturbation theory(TDPT)and offer a new tool for detecting the rotation direction of the ring currents.展开更多
The cyclic rotation of principal stress direction with a constant amplitude is the characteristics of cyclic stress in seabed deposit induced by travelling waves. Presented in the paper are the results obtained from t...The cyclic rotation of principal stress direction with a constant amplitude is the characteristics of cyclic stress in seabed deposit induced by travelling waves. Presented in the paper are the results obtained from tests simulating the cyclic stress characteristics, with emphasis laid on the buildup of pore water pressure in soil samples. Regression analysis of test data shows that the pore water pressure can be expressed as the function of the number of cycles of cyclic loading, or as the function of generalized shear strain. Using the results thus obtained, the possibility of failure of seabed deposit under cyclic loading induced by travelling waves can be evaluated. The comparison with the results of conventional cyclic torsional shear tests shows that neglect of the effect of the cyclic rotation of the principal stress direction will result in considerable over-estimation of the stability of seabed deposit.展开更多
An adaptive beamforming algorithm named robust joint iterative optimizationdirection adaptive (RJIO-DA) is proposed for large-array scenarios. Based on the framework of minimum variance distortionless response (MVD...An adaptive beamforming algorithm named robust joint iterative optimizationdirection adaptive (RJIO-DA) is proposed for large-array scenarios. Based on the framework of minimum variance distortionless response (MVDR), the proposed algorithm jointly updates a transforming matrix and a reduced-rank filter. Each column of the transforming matrix is treated as an independent direction vector and updates the weight values of each dimension within a subspace. In addition, the direction vector rotation improves the performance of the algorithm by reducing the uncertainties due to the direction error. Simulation results show that the RJIO-DA algorithm has lower complexity and faster convergence than other conventional reduced-rank algorithms.展开更多
This paper presents a new three-dimensional(3D) volume measurement approach of bubble in gas-liquid two-phase flow. According to the dual perspective imaging principle,bubble feature images can be captured from two di...This paper presents a new three-dimensional(3D) volume measurement approach of bubble in gas-liquid two-phase flow. According to the dual perspective imaging principle,bubble feature images can be captured from two different view angles. The least square ellipse fitting algorithm is used to figure out the feature parameters from the captured images. Then the 3D volume of bubble can be quantitatively measured. Compaerd with the traditional volume estimation methods based on single perspective imaging,it can effectively reduce the loss of bubble feature information. In the experiment,the 3D volume reconstruction of bubbles from dual perspective images is conducted,and the variation of bubble volume in the bubble rising process is studied. The results show that the measurement accuracy based on the proposed 3D method is higher than those based on traditional methods. The volume of rising bubble is periodically changed,which indicates that bubble achieves periodic rotation and deformation in the rising process.展开更多
We experimentally demonstrate a cascaded Raman scattering continuum, utilizing a compact mode-locked Yb-doped fiber laser based on a nonlinear polarization rotation technique in the all normal dispersion regime.There ...We experimentally demonstrate a cascaded Raman scattering continuum, utilizing a compact mode-locked Yb-doped fiber laser based on a nonlinear polarization rotation technique in the all normal dispersion regime.There is no physical filter or polarization controller in the oscillator, and a different mode-locked operation is achieved, corresponding to the extra fiber location in the oscillator. The broadband spectrum generation owes to the enhanced stimulated Raman scattering progress. The maximum output average power and peak power are14.75 n J and 18.0 W, and the short coherence light is suited for optical coherence tomography.展开更多
By using the soil static and dynamic universal triaxial and torsional shear apparatus, a series of combined cyclic shear tests are performed to simulate the rotation in the principal stress direction induced by ocean ...By using the soil static and dynamic universal triaxial and torsional shear apparatus, a series of combined cyclic shear tests are performed to simulate the rotation in the principal stress direction induced by ocean wave. The tests include the cyclic preloading tests and liquefaction tests in the second loading on saturated loose sand with a relative density of 30%. The all tests are consolidated under isotropic condition. The effect of the cyclic preloading on the resistance to liquefaction of saturated loose sands under the condition of continuous rotation in the principal stress direction is investigated. Experimental data indicate that the void ratio of saturated sands has a negligible reduction after cyclic preloading. With the increase of the intensity of cyclic preloading (in the amplitude and in the number of cycles), the resistance to liquefaction in the second loading is increased continuously under the condition that the liquefaction does not occur during the cyclic preloading. The reason is that the construction of more stable structure due to the uniformity of the void and the better interlocking of the particles when the cyclic preloading is applied to the saturated sand.展开更多
Based on covariant density functional theory, we study the effects of rotation on the nucleon direct URCA(N-DURCA) process for traditional and hyperonic neutron stars. The calculated results indicate that, for a fix...Based on covariant density functional theory, we study the effects of rotation on the nucleon direct URCA(N-DURCA) process for traditional and hyperonic neutron stars. The calculated results indicate that, for a fixed mass sequence of rotational traditional neutron stars, the neutrino emissivity of the star is nearly invariant with increasing frequency, while it always increases for rotational hyperonic neutron stars. Thus, rotation has different effects on the N-DURCA process for these two kinds of neutron stars.展开更多
基金supported in part by the National Natural Science Foundation of China (Grant Nos.62273314,U21A20141,and 51821003)Fundamental Research Program of Shanxi Province (Grant No.202303021224008)Shanxi Province Key Laboratory of Quantum Sensing and Precision Measure-ment (Grant No.201905D121001).
文摘It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.
基金The study was reviewed and approved by the Ethical Committee Faculty of Medicine,University of Indonesia(Approval No.KET-615/UN2.F1/ETIK/PPM.00.02/2020)Ethical Committee of Fatmawati General Hospital(Approval No.DM 01.01/VIII.2/1294/2020).
文摘BACKGROUND Adolescent idiopathic scoliosis remains a major problem due to its high incidence,high risk,and high cost.One of the aims of the management in scoliosis is to correct the deformity.Many techniques are available to correct scoliosis deformity;however,they are all far from ideal to achieve three-dimensional correction in scoliosis.AIM To develop a set of tools named Scoliocorrector Fatma-UI(SCFUI)to aid threedimensional correction and to evaluate the efficacy,safety,and functional outcome.METHODS This study consists of two stages.In the first stage,we developed the SCFUI and tested it in finite element and biomechanical tests.The second stage was a single-blinded randomized clinical trial to evaluate the SCFUI compared to direct vertebral rotation(DVR).Forty-four subjects with adolescent idiopathic scoliosis were randomly allocated into the DVR group(n=23)and SCFUI group(n=21).Radiological,neurological,and functional outcome was compared between the groups.RESULTS Finite element revealed the maximum stress of the SCFUI components to be between 31.2-252 MPa.Biomechanical analysis revealed the modulus elasticity of SCFUI was 9561324±633277 MPa.Both groups showed improvement in Cobb angle and sagittal profile,however the rotation angle was lower in the SCFUI group(11.59±7.46 vs 18.23±6.39,P=0.001).Neurological and functional outcome were comparable in both groups.CONCLUSION We concluded that SCFUI developed in this study resulted in similar coronal and sagittal but better rotational correction compared to DVR.The safety and functional outcomes were also similar to DVR.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11404204 and 11974229)the Natural Science Foundation for Young Scientists of Shanxi Province,China(Grant No.201901D211404)+1 种基金the Scientific and Technological Innovation Program of Higher Education Institutions in Shanxi Province,China(Grant No.2019L0468)the Project of Excellent Course of Shanxi Normal University,China(Grant No.2017YZKC-35).
文摘The attosecond ionization dynamics of atoms has attracted extensive attention in these days.However,the role of the initial state is not clearly understood.To address this question,we perform simulations on the neon atom and its model atom with different initial states by numerically solving the corresponding two-dimensional time-dependent Schrodinger¨equations.We theoretically investigate atomic photoelectron momentum distributions(PMDs)by a pair of elliptically polarized attosecond laser pulses.We find that the PMD is sensitive not only to the ellipticities of the pulses,the relative helicity,and time delay of the pulses,but also to the symmetry of the initial electronic states.Results are analyzed by the first-order time-dependent perturbation theory(TDPT)and offer a new tool for detecting the rotation direction of the ring currents.
基金This study is part of a research project financially supported by National Natural Science Foundation of China
文摘The cyclic rotation of principal stress direction with a constant amplitude is the characteristics of cyclic stress in seabed deposit induced by travelling waves. Presented in the paper are the results obtained from tests simulating the cyclic stress characteristics, with emphasis laid on the buildup of pore water pressure in soil samples. Regression analysis of test data shows that the pore water pressure can be expressed as the function of the number of cycles of cyclic loading, or as the function of generalized shear strain. Using the results thus obtained, the possibility of failure of seabed deposit under cyclic loading induced by travelling waves can be evaluated. The comparison with the results of conventional cyclic torsional shear tests shows that neglect of the effect of the cyclic rotation of the principal stress direction will result in considerable over-estimation of the stability of seabed deposit.
基金supported by the National Science&Technology Pillar Program(2013BAF07B03)Zhejiang Provincial Natural Science Foundation of China(LY13F010009)
文摘An adaptive beamforming algorithm named robust joint iterative optimizationdirection adaptive (RJIO-DA) is proposed for large-array scenarios. Based on the framework of minimum variance distortionless response (MVDR), the proposed algorithm jointly updates a transforming matrix and a reduced-rank filter. Each column of the transforming matrix is treated as an independent direction vector and updates the weight values of each dimension within a subspace. In addition, the direction vector rotation improves the performance of the algorithm by reducing the uncertainties due to the direction error. Simulation results show that the RJIO-DA algorithm has lower complexity and faster convergence than other conventional reduced-rank algorithms.
基金supported by the National Natural Science Foundation of China(Nos.61372143 and 61671321)
文摘This paper presents a new three-dimensional(3D) volume measurement approach of bubble in gas-liquid two-phase flow. According to the dual perspective imaging principle,bubble feature images can be captured from two different view angles. The least square ellipse fitting algorithm is used to figure out the feature parameters from the captured images. Then the 3D volume of bubble can be quantitatively measured. Compaerd with the traditional volume estimation methods based on single perspective imaging,it can effectively reduce the loss of bubble feature information. In the experiment,the 3D volume reconstruction of bubbles from dual perspective images is conducted,and the variation of bubble volume in the bubble rising process is studied. The results show that the measurement accuracy based on the proposed 3D method is higher than those based on traditional methods. The volume of rising bubble is periodically changed,which indicates that bubble achieves periodic rotation and deformation in the rising process.
基金supported by the National Natural Science Foundation of China(No.61575011)the Key Project of the National Natural Science Foundation of China(No.61235010)
文摘We experimentally demonstrate a cascaded Raman scattering continuum, utilizing a compact mode-locked Yb-doped fiber laser based on a nonlinear polarization rotation technique in the all normal dispersion regime.There is no physical filter or polarization controller in the oscillator, and a different mode-locked operation is achieved, corresponding to the extra fiber location in the oscillator. The broadband spectrum generation owes to the enhanced stimulated Raman scattering progress. The maximum output average power and peak power are14.75 n J and 18.0 W, and the short coherence light is suited for optical coherence tomography.
基金the National Natural Science Foundation of China (Nos. 50579006 and 50639010)
文摘By using the soil static and dynamic universal triaxial and torsional shear apparatus, a series of combined cyclic shear tests are performed to simulate the rotation in the principal stress direction induced by ocean wave. The tests include the cyclic preloading tests and liquefaction tests in the second loading on saturated loose sand with a relative density of 30%. The all tests are consolidated under isotropic condition. The effect of the cyclic preloading on the resistance to liquefaction of saturated loose sands under the condition of continuous rotation in the principal stress direction is investigated. Experimental data indicate that the void ratio of saturated sands has a negligible reduction after cyclic preloading. With the increase of the intensity of cyclic preloading (in the amplitude and in the number of cycles), the resistance to liquefaction in the second loading is increased continuously under the condition that the liquefaction does not occur during the cyclic preloading. The reason is that the construction of more stable structure due to the uniformity of the void and the better interlocking of the particles when the cyclic preloading is applied to the saturated sand.
基金Supported by National Natural Science Foundation of China(11545011,11405096)the Shandong Natural Science Foundation(ZR2014AQ012)+1 种基金the Young Scholars Program of Shandong University,Weihai(2015WHWLJH01)the Fundamental Research Funds for the Central Universities(lzujbky-2016-30)
文摘Based on covariant density functional theory, we study the effects of rotation on the nucleon direct URCA(N-DURCA) process for traditional and hyperonic neutron stars. The calculated results indicate that, for a fixed mass sequence of rotational traditional neutron stars, the neutrino emissivity of the star is nearly invariant with increasing frequency, while it always increases for rotational hyperonic neutron stars. Thus, rotation has different effects on the N-DURCA process for these two kinds of neutron stars.