Real-time simulation of industrial equipment is a huge challenge nowadays. The high performance and fine-grained parallel computing provided by graphics processing units (GPUs) bring us closer to our goals. In this ...Real-time simulation of industrial equipment is a huge challenge nowadays. The high performance and fine-grained parallel computing provided by graphics processing units (GPUs) bring us closer to our goals. In this article, an industrial-scale rotating drum is simulated using simplified discrete element method (DEM) without consideration of the tangential components of contact force and particle rotation. A single GPU is used first to simulate a small model system with about 8000 particles in real-time, and the simulation is then scaled up to industrial scale using more than 200 GPUs in a 1 D domain-decomposition parallelization mode. The overall speed is about 1/11 of the real-time. Optimization of the communication part of the parallel GPU codes can speed up the simulation further, indicating that such real-time simulations have not only methodological but also industrial implications in the near future.展开更多
Axial segreganon or a bidisperse mixture of particles in a long rotating drum is studied using the discrete element method. Simulation results show that particle interaction is responsible for axial segregation, the p...Axial segreganon or a bidisperse mixture of particles in a long rotating drum is studied using the discrete element method. Simulation results show that particle interaction is responsible for axial segregation, the patterns of which are influenced by the end wall effect. Axial segregation patterns transform under competing influences of the end walls and the particle interaction forces. The two influential factors vary with various rotational speeds and end wall friction levels. The result is the transition of different axial segregation patterns: two large-particle bands at both ends, two small-particle bands at both ends, or a random segregation pattern where either a large-particle band or small-particle band may appear at either end.展开更多
This paper generalizes two nonconforming rectangular elements of the Reissner-Mindlin plate to the quadrilateral mesh. The first quadrilateral element uses the usual conforming bilinear element to approximate both com...This paper generalizes two nonconforming rectangular elements of the Reissner-Mindlin plate to the quadrilateral mesh. The first quadrilateral element uses the usual conforming bilinear element to approximate both components of the rotation, and the modified nonconforming rotated Q1 element enriched with the intersected term on each element to approximate the displacement, whereas the second one uses the enriched modified nonconforming rotated Q1 element to approximate both the rotation and the displacement. Both elements employ a more complicated shear force space to overcome the shear force locking, which will be described in detail in the introduction. We prove that both methods converge at optimal rates uniformly in the plate thickness t and the mesh distortion parameter in both the H1-and the L2-norms, and consequently they are locking free.展开更多
Segregation and mixing of granular materials are complex processes and are not fully understood. Motivated by industrial need, we performed a simulation using the discrete element method to study size segregation of a...Segregation and mixing of granular materials are complex processes and are not fully understood. Motivated by industrial need, we performed a simulation using the discrete element method to study size segregation of a binary mixture of granular particles in a horizontal rotating drum. Particles of two dif- ferent sizes were poured into the drum until it was 50% full. Shear-driven segregation was induced by rotating the side-plates of the drum in the opposite direction to that of the cylindrical wall. We found that radial segregation diminished in these systems but did not completely vanish. In an ordinary rotating drum, a radial core of smaller particles is formed in the center of the drum, surrounded by larger revolving particles. In our system, however, the smaller particles were found to migrate toward the side-plates. The shear from anti-spinning side-plates reduces the voidage and increases the bulk density. As such, smaller particles in the mixer tend to move to denser regions. We varied the shear by changing the coefficient of friction on the side-plates to study the influence of shear rate on this migration. We also compared the extent of radial segregation with stationary side-plates and with side-plates moving in different angular directions.展开更多
In this paper, we define a new nonconforming quadrilateral finite element based on the nonconforming rotated Q1 element by enforcing a constraint on each element, which has only three degrees of freedom. We investigat...In this paper, we define a new nonconforming quadrilateral finite element based on the nonconforming rotated Q1 element by enforcing a constraint on each element, which has only three degrees of freedom. We investigate the consistency, approximation, superclose property, discrete Green's function and superconvergence of this element. Moreover, we propose a new postprocessing technique and apply it to this element. It is proved that the postprocessed discrete solution is superconvergent under a mild assumption on the mesh.展开更多
In this paper, we extend two rectangular elements for Reissner-Mindlin plate [9] to the quadrilateral case. Optimal H and L error bounds independent of the plate hickness are derived under a mild assumption on the mes...In this paper, we extend two rectangular elements for Reissner-Mindlin plate [9] to the quadrilateral case. Optimal H and L error bounds independent of the plate hickness are derived under a mild assumption on the mesh partition.展开更多
This is the third part of the paper for the rotated Q1 nonconforming element on quadrilateral meshes for general second order elliptic problems. Some optimal numerical formulas are presented and analyzed. The novelty ...This is the third part of the paper for the rotated Q1 nonconforming element on quadrilateral meshes for general second order elliptic problems. Some optimal numerical formulas are presented and analyzed. The novelty is that it includes a formula with only two sampling points which excludes even a Q1 unisolvent set. It is the optimal numerical integration formula over a quadrilateral mesh with least sampling points up to now.展开更多
This is the second part of the paper for the mathematical study of nonconforming rotated Q1 element (NRQ1 hereafter) on arbitrary quadrilateral meshes. Some Poincare Inequalities are proved without assuming the quasi-...This is the second part of the paper for the mathematical study of nonconforming rotated Q1 element (NRQ1 hereafter) on arbitrary quadrilateral meshes. Some Poincare Inequalities are proved without assuming the quasi-uniformity of the mesh subdivision. A discrete trace inequality is also proved.展开更多
This short review describes the capabilities of magnetic resonance (MR) to image opaque single- and two-phase granular systems, such as rotating cylinders and gas-fluidized beds operated in different fluidization re...This short review describes the capabilities of magnetic resonance (MR) to image opaque single- and two-phase granular systems, such as rotating cylinders and gas-fluidized beds operated in different fluidization regimes. The unique capability of MR to not only image the solids' distribution (voidage) but also the velocity of the particulate phase is clearly shown. It is demonstrated that MR can provide measurements over different length and time scales. With the MR equipment used for the studies summarized here, temporal and spatial scales range from sub-millisecond to hours and from a few hundred micrometres to a few centimetres, respectively. Besides providing crucial data required for an improved understanding of the underlying physics of granular flows, multi-scale MR measurements were also used to validate numerical simulations of granular systems. It is shown that predictions of time-averaged properties, such as voidage and velocity of the particulate phase, made using the Discrete Element Model agree very well with MR measurements.展开更多
We construct a finite volume element method based on the constrained nonconforming rotated Q_(1)-constant element(CNRQ_(1)-P_(0))for the Stokes problem.Two meshes are needed,which are the primal mesh and the dual mesh...We construct a finite volume element method based on the constrained nonconforming rotated Q_(1)-constant element(CNRQ_(1)-P_(0))for the Stokes problem.Two meshes are needed,which are the primal mesh and the dual mesh.We approximate the velocity by CNRQ_(1)elements and the pressure by piecewise constants.The errors for the velocity in the H^(1)norm and for the pressure in the L^(2)norm are O(h)and the error for the velocity in the L^(2)norm is O(h^(2)).Numerical experiments are presented to support our theoretical results.展开更多
Presents information on a study which proposed a mortar element version for rotated Q1 element. Introduction of the model problem; Auxiliary technical lemmas necessary to prove the results; Error estimate.
基金sponsored by the Ministry of Science and Tech-nology under the grant 2007DFA41320the Ministry of Financeunder the grant ZDYZ2008-2+1 种基金National Key Science and Tech-nology Project under the grant 2008ZX05014-003-006HZthe National Natural Science Foundation of China under theGrant 20821092
文摘Real-time simulation of industrial equipment is a huge challenge nowadays. The high performance and fine-grained parallel computing provided by graphics processing units (GPUs) bring us closer to our goals. In this article, an industrial-scale rotating drum is simulated using simplified discrete element method (DEM) without consideration of the tangential components of contact force and particle rotation. A single GPU is used first to simulate a small model system with about 8000 particles in real-time, and the simulation is then scaled up to industrial scale using more than 200 GPUs in a 1 D domain-decomposition parallelization mode. The overall speed is about 1/11 of the real-time. Optimization of the communication part of the parallel GPU codes can speed up the simulation further, indicating that such real-time simulations have not only methodological but also industrial implications in the near future.
基金supported by the Key Science and Technology Innovation Team of Zhejiang Province(2010R50001-3)
文摘Axial segreganon or a bidisperse mixture of particles in a long rotating drum is studied using the discrete element method. Simulation results show that particle interaction is responsible for axial segregation, the patterns of which are influenced by the end wall effect. Axial segregation patterns transform under competing influences of the end walls and the particle interaction forces. The two influential factors vary with various rotational speeds and end wall friction levels. The result is the transition of different axial segregation patterns: two large-particle bands at both ends, two small-particle bands at both ends, or a random segregation pattern where either a large-particle band or small-particle band may appear at either end.
基金the National Natural Science Foundation of China (Grant No. 10601003)National Excellent Doctoral Dissertation of China (Grant No. 200718)
文摘This paper generalizes two nonconforming rectangular elements of the Reissner-Mindlin plate to the quadrilateral mesh. The first quadrilateral element uses the usual conforming bilinear element to approximate both components of the rotation, and the modified nonconforming rotated Q1 element enriched with the intersected term on each element to approximate the displacement, whereas the second one uses the enriched modified nonconforming rotated Q1 element to approximate both the rotation and the displacement. Both elements employ a more complicated shear force space to overcome the shear force locking, which will be described in detail in the introduction. We prove that both methods converge at optimal rates uniformly in the plate thickness t and the mesh distortion parameter in both the H1-and the L2-norms, and consequently they are locking free.
文摘Segregation and mixing of granular materials are complex processes and are not fully understood. Motivated by industrial need, we performed a simulation using the discrete element method to study size segregation of a binary mixture of granular particles in a horizontal rotating drum. Particles of two dif- ferent sizes were poured into the drum until it was 50% full. Shear-driven segregation was induced by rotating the side-plates of the drum in the opposite direction to that of the cylindrical wall. We found that radial segregation diminished in these systems but did not completely vanish. In an ordinary rotating drum, a radial core of smaller particles is formed in the center of the drum, surrounded by larger revolving particles. In our system, however, the smaller particles were found to migrate toward the side-plates. The shear from anti-spinning side-plates reduces the voidage and increases the bulk density. As such, smaller particles in the mixer tend to move to denser regions. We varied the shear by changing the coefficient of friction on the side-plates to study the influence of shear rate on this migration. We also compared the extent of radial segregation with stationary side-plates and with side-plates moving in different angular directions.
文摘In this paper, we define a new nonconforming quadrilateral finite element based on the nonconforming rotated Q1 element by enforcing a constraint on each element, which has only three degrees of freedom. We investigate the consistency, approximation, superclose property, discrete Green's function and superconvergence of this element. Moreover, we propose a new postprocessing technique and apply it to this element. It is proved that the postprocessed discrete solution is superconvergent under a mild assumption on the mesh.
基金Subsidized by the Special Funds for Major State Basic Research Projects G1999032804.
文摘In this paper, we extend two rectangular elements for Reissner-Mindlin plate [9] to the quadrilateral case. Optimal H and L error bounds independent of the plate hickness are derived under a mild assumption on the mesh partition.
基金The work of P.-B Ming was partially supported by the National Natural Science Foundation of China 10201033
文摘This is the third part of the paper for the rotated Q1 nonconforming element on quadrilateral meshes for general second order elliptic problems. Some optimal numerical formulas are presented and analyzed. The novelty is that it includes a formula with only two sampling points which excludes even a Q1 unisolvent set. It is the optimal numerical integration formula over a quadrilateral mesh with least sampling points up to now.
基金The work of P.-B.Ming was partially supported by the National Natural Science Foundation of China 10201033
文摘This is the second part of the paper for the mathematical study of nonconforming rotated Q1 element (NRQ1 hereafter) on arbitrary quadrilateral meshes. Some Poincare Inequalities are proved without assuming the quasi-uniformity of the mesh subdivision. A discrete trace inequality is also proved.
基金Financial support from the EPSRC (EP/C547195/1and GR/S20789/01)
文摘This short review describes the capabilities of magnetic resonance (MR) to image opaque single- and two-phase granular systems, such as rotating cylinders and gas-fluidized beds operated in different fluidization regimes. The unique capability of MR to not only image the solids' distribution (voidage) but also the velocity of the particulate phase is clearly shown. It is demonstrated that MR can provide measurements over different length and time scales. With the MR equipment used for the studies summarized here, temporal and spatial scales range from sub-millisecond to hours and from a few hundred micrometres to a few centimetres, respectively. Besides providing crucial data required for an improved understanding of the underlying physics of granular flows, multi-scale MR measurements were also used to validate numerical simulations of granular systems. It is shown that predictions of time-averaged properties, such as voidage and velocity of the particulate phase, made using the Discrete Element Model agree very well with MR measurements.
基金This work is supported by the “985”program of Jilin University and the National Natural Science Foundation of China(NO.10971082).
文摘We construct a finite volume element method based on the constrained nonconforming rotated Q_(1)-constant element(CNRQ_(1)-P_(0))for the Stokes problem.Two meshes are needed,which are the primal mesh and the dual mesh.We approximate the velocity by CNRQ_(1)elements and the pressure by piecewise constants.The errors for the velocity in the H^(1)norm and for the pressure in the L^(2)norm are O(h)and the error for the velocity in the L^(2)norm is O(h^(2)).Numerical experiments are presented to support our theoretical results.
基金Subsidized by the National Natural Science Foundation of China under Grant 19901014 the Special Funds for Major State Basic Research Projects.
文摘Presents information on a study which proposed a mortar element version for rotated Q1 element. Introduction of the model problem; Auxiliary technical lemmas necessary to prove the results; Error estimate.