This paper introduces the reader to our Kalman filter developed for geodetic VLBI(very long baseline interferometry) data analysis. The focus lies on the EOP(Earth Orientation Parameter) determination based on the...This paper introduces the reader to our Kalman filter developed for geodetic VLBI(very long baseline interferometry) data analysis. The focus lies on the EOP(Earth Orientation Parameter) determination based on the Continuous VLBI Campaign 2014(CONT14) data, but also earlier CONT campaigns are analyzed. For validation and comparison purposes we use EOP determined with the classical LSM(least squares method) estimated from the same VLBI data set as the Kalman solution with a daily resolution. To gain higher resolved EOP from LSM we run solutions which yield hourly estimates for polar motion and dUTl = Universal Time(UT1)-Coordinated Universal Time(UTC). As an external validation data set we use a GPS(Global Positioning System) solution providing hourly polar motion results.Further, we describe our approach for determining the noise driving the Kalman filter. It has to be chosen carefully, since it can lead to a significant degradation of the results. We illustrate this issue in context with the de-correlation of polar motion and nutation.Finally, we find that the agreement with respect to GPS can be improved by up to 50% using our filter compared to the LSM approach, reaching a similar precision than the GPS solution. Especially the power of erroneous high-frequency signals can be reduced dramatically, opening up new possibilities for highfrequency EOP studies and investigations of the models involved in VLBI data analysis.We prove that the Kalman filter is more than on par with the classical least squares method and that it is a valuable alternative, especially on the advent of the VLBI2010 Global Observing System and within the GGOS frame work.展开更多
A simple harmonic motion is proposed to make the membrane move in a simpleharmonic way so as to enhance the membrane filtration, and minimize the membrane fouling andconcentration polarization. The velocity distributi...A simple harmonic motion is proposed to make the membrane move in a simpleharmonic way so as to enhance the membrane filtration, and minimize the membrane fouling andconcentration polarization. The velocity distribution and pressure distribution are deduced from theNavier-Stokes equation on the basis of a laminar flow when the membrane rotates at the speed of Asin(αt). And then the shear stress, shear force, moment of force on the membrane surface and powerconsumed by viscous force are calculated. The velocity distribution demonstrates that the phase ofmembrane velocity does not synchronize with that of shear stress. The simple harmonic motion canresult in self-cleaning, optimize energy utilization, provide the velocity field with instability,and make the feed fluid fluctuation. It also results in higher shear stress on the membrane surfacethan the constant motion when they consume the same quantitative energy.展开更多
Since the gas infrared absorption spectrum source intensity of several in a thousand, it is even less linewidth is only several nanometers occupying the than the noise of light source. The signal of gas absorption is ...Since the gas infrared absorption spectrum source intensity of several in a thousand, it is even less linewidth is only several nanometers occupying the than the noise of light source. The signal of gas absorption is submerged in the noise, so it is impossible to measure the concentration of gas with spectrum absorption directly. According to the principle and parameters of difference absorption system of CH4 gas, a detection circuit consisted of the lock-in amplifier is designed. The experiment results indicated that the detection circuit can satisfy the demand of the whole system, and the limit concentration is 150×10^-6.展开更多
We report the experimental demonstration of an ultranarrow bandwidth atomic filter by optically induced polarization rotation in multilevel electromagnetically induced transparency systems in hot Rb vapor. With a coup...We report the experimental demonstration of an ultranarrow bandwidth atomic filter by optically induced polarization rotation in multilevel electromagnetically induced transparency systems in hot Rb vapor. With a coupling intensity of 2.3 W/cm^2, the filter shows a peak transmission of 33.2% and a bandwidth of 10 MHz. By altering the coupling frequency, a broad tuning range of several Doppler linewidths of the D1 line transitions of STRb atoms can be obtained. The presented atomic filter has useful features of ultranarrow bandwidth, and the operating frequency can be tuned resonance with the atomic transition. Such narrowband tunable atomic filter can be used as an efficient noise rejection tool in classical and quantum optical applications.展开更多
A setup for the generation of arbitrary vector beams is proposed. The setup mainly consists of a spatial light modulator(SLM), an angle-adjustable polarization beam splitter modulator, and a spatial filtering imagin...A setup for the generation of arbitrary vector beams is proposed. The setup mainly consists of a spatial light modulator(SLM), an angle-adjustable polarization beam splitter modulator, and a spatial filtering imaging system. Compared with the system using a birefringent beam splitter with a non-adjustable splitting angle,the polarization splitting angle of the improved setup can be adjusted by slightly rotating the related mirrors,which will bring more convenience when different wavelengths and different pixel sizes of SLMs are involved.The experimental results also demonstrate that the setup possesses a good polarization-selective imaging ability, which reveals that the setup may also be useful in polarization-selective spatial filtering imaging and polarization-encoded encryption.展开更多
基金supported by the Austrian Science Fund(FWF),project P24187-N21
文摘This paper introduces the reader to our Kalman filter developed for geodetic VLBI(very long baseline interferometry) data analysis. The focus lies on the EOP(Earth Orientation Parameter) determination based on the Continuous VLBI Campaign 2014(CONT14) data, but also earlier CONT campaigns are analyzed. For validation and comparison purposes we use EOP determined with the classical LSM(least squares method) estimated from the same VLBI data set as the Kalman solution with a daily resolution. To gain higher resolved EOP from LSM we run solutions which yield hourly estimates for polar motion and dUTl = Universal Time(UT1)-Coordinated Universal Time(UTC). As an external validation data set we use a GPS(Global Positioning System) solution providing hourly polar motion results.Further, we describe our approach for determining the noise driving the Kalman filter. It has to be chosen carefully, since it can lead to a significant degradation of the results. We illustrate this issue in context with the de-correlation of polar motion and nutation.Finally, we find that the agreement with respect to GPS can be improved by up to 50% using our filter compared to the LSM approach, reaching a similar precision than the GPS solution. Especially the power of erroneous high-frequency signals can be reduced dramatically, opening up new possibilities for highfrequency EOP studies and investigations of the models involved in VLBI data analysis.We prove that the Kalman filter is more than on par with the classical least squares method and that it is a valuable alternative, especially on the advent of the VLBI2010 Global Observing System and within the GGOS frame work.
文摘A simple harmonic motion is proposed to make the membrane move in a simpleharmonic way so as to enhance the membrane filtration, and minimize the membrane fouling andconcentration polarization. The velocity distribution and pressure distribution are deduced from theNavier-Stokes equation on the basis of a laminar flow when the membrane rotates at the speed of Asin(αt). And then the shear stress, shear force, moment of force on the membrane surface and powerconsumed by viscous force are calculated. The velocity distribution demonstrates that the phase ofmembrane velocity does not synchronize with that of shear stress. The simple harmonic motion canresult in self-cleaning, optimize energy utilization, provide the velocity field with instability,and make the feed fluid fluctuation. It also results in higher shear stress on the membrane surfacethan the constant motion when they consume the same quantitative energy.
基金Doctorate Foundation of Hebei Province(03547020D) Natural Science Foundation of Heilongjiang Province(F0312)
文摘Since the gas infrared absorption spectrum source intensity of several in a thousand, it is even less linewidth is only several nanometers occupying the than the noise of light source. The signal of gas absorption is submerged in the noise, so it is impossible to measure the concentration of gas with spectrum absorption directly. According to the principle and parameters of difference absorption system of CH4 gas, a detection circuit consisted of the lock-in amplifier is designed. The experiment results indicated that the detection circuit can satisfy the demand of the whole system, and the limit concentration is 150×10^-6.
基金supported by the National Basic Research Program of China(No.2006CB921203)the National Natural Science Foundation of China(No.11174327)+1 种基金the Foundation of Wuhan National Laboratory for Optoelectronics(No.P080002)the support of the Hundred Talent Program by the Chinese Academy of Sciences
文摘We report the experimental demonstration of an ultranarrow bandwidth atomic filter by optically induced polarization rotation in multilevel electromagnetically induced transparency systems in hot Rb vapor. With a coupling intensity of 2.3 W/cm^2, the filter shows a peak transmission of 33.2% and a bandwidth of 10 MHz. By altering the coupling frequency, a broad tuning range of several Doppler linewidths of the D1 line transitions of STRb atoms can be obtained. The presented atomic filter has useful features of ultranarrow bandwidth, and the operating frequency can be tuned resonance with the atomic transition. Such narrowband tunable atomic filter can be used as an efficient noise rejection tool in classical and quantum optical applications.
基金supported by the National Natural Science Foundation of China under Grant No.11474186
文摘A setup for the generation of arbitrary vector beams is proposed. The setup mainly consists of a spatial light modulator(SLM), an angle-adjustable polarization beam splitter modulator, and a spatial filtering imaging system. Compared with the system using a birefringent beam splitter with a non-adjustable splitting angle,the polarization splitting angle of the improved setup can be adjusted by slightly rotating the related mirrors,which will bring more convenience when different wavelengths and different pixel sizes of SLMs are involved.The experimental results also demonstrate that the setup possesses a good polarization-selective imaging ability, which reveals that the setup may also be useful in polarization-selective spatial filtering imaging and polarization-encoded encryption.