This study numerically analyzed the heat transfer characteristics outside the condenser of a rotating heat pipe grinding wheel(RHP-GW).The goal of this investigation is to determine the optimal structure and parameter...This study numerically analyzed the heat transfer characteristics outside the condenser of a rotating heat pipe grinding wheel(RHP-GW).The goal of this investigation is to determine the optimal structure and parameters for the condenser section of RHP-GW.Different fin height(f=0-7 mm),rotational Reynolds number(Rer=1602-6408)and jet Reynolds number(Rej=42379-108302)were analyzed under input heat flux of 4000 W/m2.A fully developed flow was imposed at the outlet of the nozzles.Results showed that the optimal heat transfer rate was obtained for fin height of 5 mm,which improved the average Nusselt number by 84%compared to the structure without fins.A critical Rej for each Rer that the impinging jet can reach the condenser section was found.The critical Rej value increases with Rer,which is in the range from 42379 to 61215 and 61215 to 80050 for Rer=6408 and Rer=9610,respectively.展开更多
基金This work was supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20190752)the National Natural Science Foundation of China(Grant No.51905275)+2 种基金the Natural Science Foundation of Colleges and Universities in Jiangsu Province(Grant No.19KJB460020)the Faculty Research Funding of Nanjing Forestry University(Grant No.163040111)the Open Foundation of Jiangsu Wind Power Generation Engineering and Technology Center(No.Zk19-03-12).
文摘This study numerically analyzed the heat transfer characteristics outside the condenser of a rotating heat pipe grinding wheel(RHP-GW).The goal of this investigation is to determine the optimal structure and parameters for the condenser section of RHP-GW.Different fin height(f=0-7 mm),rotational Reynolds number(Rer=1602-6408)and jet Reynolds number(Rej=42379-108302)were analyzed under input heat flux of 4000 W/m2.A fully developed flow was imposed at the outlet of the nozzles.Results showed that the optimal heat transfer rate was obtained for fin height of 5 mm,which improved the average Nusselt number by 84%compared to the structure without fins.A critical Rej for each Rer that the impinging jet can reach the condenser section was found.The critical Rej value increases with Rer,which is in the range from 42379 to 61215 and 61215 to 80050 for Rer=6408 and Rer=9610,respectively.