Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery...Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization.展开更多
This paper presents a method of rotating machinery fault diagnosis based on the close degree of information entropy. In the view of the information entropy, we introduce four information entropy features of the rotati...This paper presents a method of rotating machinery fault diagnosis based on the close degree of information entropy. In the view of the information entropy, we introduce four information entropy features of the rotating machinery, which describe the vibration condition of the machinery. The four features are, respectively, denominated as singular spectrum entropy, power spectrum entropy, wavelet space state feature entropy and wavelet power spectrum entropy. The value scopes of the four information entropy features of the rotating machinery in some typical fault conditions are gained by experiments, which can be acted as the standard features of fault diagnosis. According to the principle of the shorter distance between the more similar models, the decision-making method based on the close degree of information entropy is put forward to deal with the recognition of fault patterns. We demonstrate the effectiveness of this approach in an instance involving the fault pattern recognition of some rotating machinery.展开更多
A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tes...A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tested by the experimental data that collected from Bently rotor experiment system. The results show that this methodology is very effective to extract the feature of vibration signals in the rotor speed-up course and can be extended to other non-stationary signal analysis fields in the future.展开更多
Compound fault,as a primary failure leading to unexpected downtime of rotating machinery,dramatically increases the difficulty in fault diagnosis.To deal with the difficulty encountered in implementing compound fault ...Compound fault,as a primary failure leading to unexpected downtime of rotating machinery,dramatically increases the difficulty in fault diagnosis.To deal with the difficulty encountered in implementing compound fault diagnosis(CFD),researchers and engineers from industry and academia have made numerous significant breakthroughs in recent years.Admittedly,many systematic surveys focused on fault diagnosis have been conducted by reputable researchers.Nevertheless,previous review articles paid more attention to fault diagnosis with several single or independent faults,resulting in that there is still lacking a comprehensive survey on CFD.Therefore,to fulfill the above requirements,it is necessary to provide an in-depth overview of fault diagnosis methods or algorithms for compound faults of rotating machinery and uncover potential challenges or opportunities that would guide and inspire readers to devote their efforts to promoting fault diagnosis technology more effective and practical.Specifically,the backgrounds,including the related definitions and a new taxonomy of CFD methods,are detailed according to the way of implementing compound fault recognition.Then,the stateof-the-art applications of CFD are overviewed based on relevant publications in the past decades.Finally,the challenges and opportunities associated with implementing CFD are concluded and followed by a conclusion for ending this survey.We believe that this review article can provide a systematic guideline of CFD from different aspects for potential readers and seasoned researchers.展开更多
Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ...Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ability of a time-division scale level moment. The analysis results in the caculation of six typical fault signals show that the time-division scale level moment can be used to display the detailed information of a wavelet gray level image, extract the signal's characteristics effectively, and distinguish the vibration fault. Compared to the method of a wave gray moment vector, the method mentioned in this paper can provide higher calculation speed and higher capacity of fault identification, so it is more suitable for online fault diagnosis for rotating machinery.展开更多
Faults in rotating machine are difficult to detect and identify,especially when the system is complex and nonlinear.In order to solve this problem,a novel performance monitoring and fault diagnosis method based on ker...Faults in rotating machine are difficult to detect and identify,especially when the system is complex and nonlinear.In order to solve this problem,a novel performance monitoring and fault diagnosis method based on kernel generalized discriminant analysis(kernel GDA,KGDA)was proposed.Through KGDA,the data were mapped from the original space to the high-dimensional feature space.Then the statistic distance between normal data and test data was constructed to detect whether a fault was occurring.If a fault had occurred,similar analysis was used to identify the type of faults.The effectiveness of the proposed method was evaluated by simulation results of vibration signal fault dataset in the rotating machinery,which was scalable to different rotating machinery.展开更多
Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the mach...Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the machine’s operating condition through its temperature. In this paper, an investigation of using the second-order statistical features of thermogram in association with minimum redundancy maximum relevance (mRMR) feature selection and simplified fuzzy ARTMAP (SFAM) classification is conducted for rotating machinery fault diagnosis. The thermograms of different machine conditions are firstly preprocessed for improving the image contrast, removing noise, and cropping to obtain the regions of interest (ROIs). Then, an enhanced algorithm based on bi-dimensional empirical mode decomposition is implemented to further increase the quality of ROIs before the second-order statistical features are extracted from their gray-level co-occurrence matrix (GLCM). The highly relevant features to the machine condition are selected from the total feature set by mRMR and are fed into SFAM to accomplish the fault diagnosis. In order to verify this investigation, the thermograms acquired from different conditions of a fault simulator including normal, misalignment, faulty bearing, and mass unbalance are used. This investigation also provides a comparative study of SFAM and other traditional methods such as back-propagation and probabilistic neural networks. The results show that the second-order statistical features used in this framework can provide a plausible accuracy in fault diagnosis of rotating machinery.展开更多
A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from ...A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks.展开更多
This paper expounded in detail the principle of energy spectrum analysis based on discrete wavelet transformation and multiresolution analysis. In the aspect of feature extraction method study, with investigating the ...This paper expounded in detail the principle of energy spectrum analysis based on discrete wavelet transformation and multiresolution analysis. In the aspect of feature extraction method study, with investigating the feature of impact factor in vibration signals and considering the non-placidity and non-linear of vibration diagnosis signals, the authors import wavelet analysis and fractal theory as the tools of faulty signal feature description. Experimental results proved the validity of this method. To some extent, this method provides a good approach of resolving the wholesome problem of fault feature symptom description.展开更多
Existing fault diagnosis methods usually assume that there are balanced training data for every machine health state.However,the collection of fault signals is very difficult and expensive,resulting in the problem of ...Existing fault diagnosis methods usually assume that there are balanced training data for every machine health state.However,the collection of fault signals is very difficult and expensive,resulting in the problem of imbalanced training dataset.It will degrade the performance of fault diagnosis methods significantly.To address this problem,an imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning is proposed in this paper.Unsupervised autoencoder is firstly used to compress every monitoring signal into a low-dimensional vector as the node attribute in the SuperGraph.And the edge connections in the graph depend on the relationship between signals.On the basis,graph convolution is performed on the constructed SuperGraph to achieve imbalanced training dataset fault diagnosis for rotating machinery.Comprehensive experiments are conducted on a benchmarking publicized dataset and a practical experimental platform,and the results show that the proposed method can effectively achieve rotating machinery fault diagnosis towards imbalanced training dataset through graph feature learning.展开更多
To diagnosethe reciprocating mechanical fault.We utilizedlocal waveti me-frequency approach.Firstly,we gave the principle.Secondly,the application of local wave ti me-frequency was given.Finally,we discusseditsvirtue ...To diagnosethe reciprocating mechanical fault.We utilizedlocal waveti me-frequency approach.Firstly,we gave the principle.Secondly,the application of local wave ti me-frequency was given.Finally,we discusseditsvirtue in reciprocating mechanical fault diagnosis.展开更多
Rotating machinery is widely applied in industrial applications.Fault diagnosis of rotating machinery is vital in manufacturing system,which can prevent catastrophic failure and reduce financial losses.Recently,Deep L...Rotating machinery is widely applied in industrial applications.Fault diagnosis of rotating machinery is vital in manufacturing system,which can prevent catastrophic failure and reduce financial losses.Recently,Deep Learning(DL)-based fault diagnosis method becomes a hot topic.Convolutional Neural Network(CNN)is an effective DL method to extract the features of raw data automatically.This paper develops a fault diagnosis method using CNN for InfRared Thermal(IRT)image.First,IRT technique is utilized to capture the IRT images of rotating machinery.Second,the CNN is applied to extract fault features from the IRT images.In the end,the obtained features are fed into the Softmax Regression(SR)classifier for fault pattern identification.The effectiveness of the proposed method is validated using two different experimental data.Results show that the proposed method has a superior performance in identification various faults on rotor and bearings comparing with other deep learning models and traditional vibration-based method.展开更多
A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envel...A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to realize single channel compound fault diagnosis of bearings and improve the diagnosis accuracy, an improved CICA algorithm named constrained independent component analysis based on the energy method (E-CICA) is proposed. With the approach, the single channel vibration signal is firstly decomposed into several wavelet coefficients by discrete wavelet transform(DWT) method for the purpose of obtaining multichannel signals. Then the envelope signals of the reconstructed wavelet coefficients are selected as the input of E-CICA algorithm, which fulfills the requirements that the number of sensors is greater than or equal to that of the source signals and makes it more suitable to be processed by CICA strategy. The frequency energy ratio(ER) of each wavelet reconstructed signal to the total energy of the given synchronous signal is calculated, and then the synchronous signal with maximum ER value is set as the reference signal accordingly. By this way, the reference signal contains a priori knowledge of fault source signal and the influence on fault signal extraction accuracy which is caused by the initial phase angle and the duty ratio of the reference signal in the traditional CICA algorithm is avoided. Experimental results show that E-CICA algorithm can effectively separate out the outer-race defect and the rollers defect from the single channel compound fault and fulfill the needs of compound fault diagnosis of rolling bearings, and the running time is 0.12% of that of the traditional CICA algorithm and the extraction accuracy is 1.4 times of that of CICA as well. The proposed research provides a new method to separate single channel compound fault signals.展开更多
In this paper, comparative combined fault diagnosis schemes are studied including vibration analysis, acoustic signal analysis and thermal image analysis based on the Convolutional Neural Network (CNN). The advantage ...In this paper, comparative combined fault diagnosis schemes are studied including vibration analysis, acoustic signal analysis and thermal image analysis based on the Convolutional Neural Network (CNN). The advantage of the CNN structure is that it does not need manual feature extraction or selection, which requires prior knowledge of specific machinery dynamics. The vibration and acoustic signals were transformed into spectrograms, which are effective for the diagnostic analysis by using CNN. Comparatively, the thermal images were directly analyzed using CNN. The effectiveness of the CNN-based diagnosis methods was investigated through the analysis of different experimental data, i.e., vibration, acoustic signals and thermal images, which were collected from a test rig where different types of faults are induced on the roller bearing and shaft. The results show that the thermal image analysis and acoustic signal analysis could achieve relatively higher accuracy rate compared to vibration analysis. Moreover, the advantage is easy-deployment because of the non-contact way during signal acquisition. With the CNN-based fault diagnosis method for the three different signals collected, the accuracy of different signal predictions for combined faults can be compared, and the effective method can be applied to fault diagnosis of other industrial rotating machinery.展开更多
In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The pape...In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The paper is proposing a 3-Steps methodology for the machine fault diagnosis to meet the industrial requirements to aid the maintenance activity.The Step-1 identifies whether machine is healthy or faulty,then Step-2 detect the type of defect and finally its location in Step-3.This method is extended further from the earlier study on the 2-Steps method for the rotor defects only to the 3-Steps methodology to both rotor and bearing defects.The method uses the optimised vibration parameters and a simple Artificial Neural Network(ANN)-based Machine Learning(ML)model from the earlier studies.The model is initially developed,tested and validated on an experimental rotating rig operating at a speed above 1st critical speed.The proposed method and model are then further validated at 2 different operating speeds,one below 1st critical speed and other above 2nd critical speed.The machine dynamics are expected to be significantly different at these speeds.This highlights the robustness of the proposed 3-Steps method.展开更多
A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault d...A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault diagnosis under uncertainty. According to the theory , an inference model , named as FSL , is thus designed to be devoted to the building of a fault diagnosis expert system for rotating machinery (ROSLES) . The system is put into operation on a vibration simula- tor stand for 300 MW turbine generator set ( 1 : 1 0) and satisfactory results are gained.展开更多
With the help of the feedforward neural network diagnostic method, the hybrid diagnostic networks corresponding to information in multiple symptom domains are built and the comprehensive judgment is carried out with w...With the help of the feedforward neural network diagnostic method, the hybrid diagnostic networks corresponding to information in multiple symptom domains are built and the comprehensive judgment is carried out with weighted average method. Meanwhile, this method has the ability of self learning and self adaptation in order to adapt both the complexity of vibrations produced practically and the pluralistic potent of vibration symptoms induced really for large rotating machinery, especially for turbogenerators. The reliability and precision of diagnosis with this method is heightened. It seems that the method can take more practical value in engineering applications.展开更多
针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故...针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故障诊断中。首先,在采集的振动信号中增加不同强度的噪声,再经DFIF分解得到若干个本征模态函数(intrinsic mode function,IMF)分量,选取综合评价指标值最小的IMF分量作为输入样本;其次,提出了自适应残差单元(adaptive residual building unit,ARBU),ARBU通过计算各个通道的最优系数,自适应地放大故障敏感特征和抑制无关特征,能够更好地替代传统的残差单元;最后,基于ARBU构造AResNet,输入样本经过AResNet得到故障诊断结果。将所提方法应用于噪声背景下旋转机械的故障诊断中,在两个不同数据集中进行了验证。研究结果表明,与现有方法相比,所提方法具有更高的噪声鲁棒性、稳定性和更优的计算效率,且能够更好地解决旋转机械在噪声背景下故障特征难以有效挖掘的问题。展开更多
基金Shaanxi Province key Research and Development Plan-Listed project(2022-JBGS-07)。
文摘Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization.
基金This paper is supported by National Natural Science Foundation of China under Grant No.50105004 and Naval Youth Science Foundation of China under Grant No.04-Equipment Office-236.
文摘This paper presents a method of rotating machinery fault diagnosis based on the close degree of information entropy. In the view of the information entropy, we introduce four information entropy features of the rotating machinery, which describe the vibration condition of the machinery. The four features are, respectively, denominated as singular spectrum entropy, power spectrum entropy, wavelet space state feature entropy and wavelet power spectrum entropy. The value scopes of the four information entropy features of the rotating machinery in some typical fault conditions are gained by experiments, which can be acted as the standard features of fault diagnosis. According to the principle of the shorter distance between the more similar models, the decision-making method based on the close degree of information entropy is put forward to deal with the recognition of fault patterns. We demonstrate the effectiveness of this approach in an instance involving the fault pattern recognition of some rotating machinery.
基金This project is supported by National Natural Science Foundation of China(No.50075079).
文摘A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tested by the experimental data that collected from Bently rotor experiment system. The results show that this methodology is very effective to extract the feature of vibration signals in the rotor speed-up course and can be extended to other non-stationary signal analysis fields in the future.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 52205100,52275111,and 52205101in part by the Natural Science Foundations of Guangdong Province-China under Grants 2023A1515012856in part by China Postdoctoral Science Foundation under Grant 2022M711197.
文摘Compound fault,as a primary failure leading to unexpected downtime of rotating machinery,dramatically increases the difficulty in fault diagnosis.To deal with the difficulty encountered in implementing compound fault diagnosis(CFD),researchers and engineers from industry and academia have made numerous significant breakthroughs in recent years.Admittedly,many systematic surveys focused on fault diagnosis have been conducted by reputable researchers.Nevertheless,previous review articles paid more attention to fault diagnosis with several single or independent faults,resulting in that there is still lacking a comprehensive survey on CFD.Therefore,to fulfill the above requirements,it is necessary to provide an in-depth overview of fault diagnosis methods or algorithms for compound faults of rotating machinery and uncover potential challenges or opportunities that would guide and inspire readers to devote their efforts to promoting fault diagnosis technology more effective and practical.Specifically,the backgrounds,including the related definitions and a new taxonomy of CFD methods,are detailed according to the way of implementing compound fault recognition.Then,the stateof-the-art applications of CFD are overviewed based on relevant publications in the past decades.Finally,the challenges and opportunities associated with implementing CFD are concluded and followed by a conclusion for ending this survey.We believe that this review article can provide a systematic guideline of CFD from different aspects for potential readers and seasoned researchers.
基金This paper is supported by the National Natural Science Foundation of China (NSFC) under Grant No.50775083
文摘Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ability of a time-division scale level moment. The analysis results in the caculation of six typical fault signals show that the time-division scale level moment can be used to display the detailed information of a wavelet gray level image, extract the signal's characteristics effectively, and distinguish the vibration fault. Compared to the method of a wave gray moment vector, the method mentioned in this paper can provide higher calculation speed and higher capacity of fault identification, so it is more suitable for online fault diagnosis for rotating machinery.
基金National Natural Science Foundation of China(No.60504033)
文摘Faults in rotating machine are difficult to detect and identify,especially when the system is complex and nonlinear.In order to solve this problem,a novel performance monitoring and fault diagnosis method based on kernel generalized discriminant analysis(kernel GDA,KGDA)was proposed.Through KGDA,the data were mapped from the original space to the high-dimensional feature space.Then the statistic distance between normal data and test data was constructed to detect whether a fault was occurring.If a fault had occurred,similar analysis was used to identify the type of faults.The effectiveness of the proposed method was evaluated by simulation results of vibration signal fault dataset in the rotating machinery,which was scalable to different rotating machinery.
文摘Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the machine’s operating condition through its temperature. In this paper, an investigation of using the second-order statistical features of thermogram in association with minimum redundancy maximum relevance (mRMR) feature selection and simplified fuzzy ARTMAP (SFAM) classification is conducted for rotating machinery fault diagnosis. The thermograms of different machine conditions are firstly preprocessed for improving the image contrast, removing noise, and cropping to obtain the regions of interest (ROIs). Then, an enhanced algorithm based on bi-dimensional empirical mode decomposition is implemented to further increase the quality of ROIs before the second-order statistical features are extracted from their gray-level co-occurrence matrix (GLCM). The highly relevant features to the machine condition are selected from the total feature set by mRMR and are fed into SFAM to accomplish the fault diagnosis. In order to verify this investigation, the thermograms acquired from different conditions of a fault simulator including normal, misalignment, faulty bearing, and mass unbalance are used. This investigation also provides a comparative study of SFAM and other traditional methods such as back-propagation and probabilistic neural networks. The results show that the second-order statistical features used in this framework can provide a plausible accuracy in fault diagnosis of rotating machinery.
基金Project supported by the National Major Science and Technology Foundation of China during the 10th Five-Year Plan Period(No.2001BA204B05-KHK Z0009)
文摘A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks.
文摘This paper expounded in detail the principle of energy spectrum analysis based on discrete wavelet transformation and multiresolution analysis. In the aspect of feature extraction method study, with investigating the feature of impact factor in vibration signals and considering the non-placidity and non-linear of vibration diagnosis signals, the authors import wavelet analysis and fractal theory as the tools of faulty signal feature description. Experimental results proved the validity of this method. To some extent, this method provides a good approach of resolving the wholesome problem of fault feature symptom description.
基金This work was supported by the National Key R&D Program of China(Grant No.2020YFB1711203).
文摘Existing fault diagnosis methods usually assume that there are balanced training data for every machine health state.However,the collection of fault signals is very difficult and expensive,resulting in the problem of imbalanced training dataset.It will degrade the performance of fault diagnosis methods significantly.To address this problem,an imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning is proposed in this paper.Unsupervised autoencoder is firstly used to compress every monitoring signal into a low-dimensional vector as the node attribute in the SuperGraph.And the edge connections in the graph depend on the relationship between signals.On the basis,graph convolution is performed on the constructed SuperGraph to achieve imbalanced training dataset fault diagnosis for rotating machinery.Comprehensive experiments are conducted on a benchmarking publicized dataset and a practical experimental platform,and the results show that the proposed method can effectively achieve rotating machinery fault diagnosis towards imbalanced training dataset through graph feature learning.
文摘To diagnosethe reciprocating mechanical fault.We utilizedlocal waveti me-frequency approach.Firstly,we gave the principle.Secondly,the application of local wave ti me-frequency was given.Finally,we discusseditsvirtue in reciprocating mechanical fault diagnosis.
基金supported by National Natural Science Foundation of China(No.51805434)in part by the China Postdoctoral Innovative Talent Plan,China(No.BX20180257)+1 种基金in part by the Postdoctoral Science Funds,China(No.2018M641021)in part by the Key Research Program,Shaanxi Province.
文摘Rotating machinery is widely applied in industrial applications.Fault diagnosis of rotating machinery is vital in manufacturing system,which can prevent catastrophic failure and reduce financial losses.Recently,Deep Learning(DL)-based fault diagnosis method becomes a hot topic.Convolutional Neural Network(CNN)is an effective DL method to extract the features of raw data automatically.This paper develops a fault diagnosis method using CNN for InfRared Thermal(IRT)image.First,IRT technique is utilized to capture the IRT images of rotating machinery.Second,the CNN is applied to extract fault features from the IRT images.In the end,the obtained features are fed into the Softmax Regression(SR)classifier for fault pattern identification.The effectiveness of the proposed method is validated using two different experimental data.Results show that the proposed method has a superior performance in identification various faults on rotor and bearings comparing with other deep learning models and traditional vibration-based method.
基金Supported by National Natural Science Foundation of China(Grant No.51475034)
文摘A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to realize single channel compound fault diagnosis of bearings and improve the diagnosis accuracy, an improved CICA algorithm named constrained independent component analysis based on the energy method (E-CICA) is proposed. With the approach, the single channel vibration signal is firstly decomposed into several wavelet coefficients by discrete wavelet transform(DWT) method for the purpose of obtaining multichannel signals. Then the envelope signals of the reconstructed wavelet coefficients are selected as the input of E-CICA algorithm, which fulfills the requirements that the number of sensors is greater than or equal to that of the source signals and makes it more suitable to be processed by CICA strategy. The frequency energy ratio(ER) of each wavelet reconstructed signal to the total energy of the given synchronous signal is calculated, and then the synchronous signal with maximum ER value is set as the reference signal accordingly. By this way, the reference signal contains a priori knowledge of fault source signal and the influence on fault signal extraction accuracy which is caused by the initial phase angle and the duty ratio of the reference signal in the traditional CICA algorithm is avoided. Experimental results show that E-CICA algorithm can effectively separate out the outer-race defect and the rollers defect from the single channel compound fault and fulfill the needs of compound fault diagnosis of rolling bearings, and the running time is 0.12% of that of the traditional CICA algorithm and the extraction accuracy is 1.4 times of that of CICA as well. The proposed research provides a new method to separate single channel compound fault signals.
文摘In this paper, comparative combined fault diagnosis schemes are studied including vibration analysis, acoustic signal analysis and thermal image analysis based on the Convolutional Neural Network (CNN). The advantage of the CNN structure is that it does not need manual feature extraction or selection, which requires prior knowledge of specific machinery dynamics. The vibration and acoustic signals were transformed into spectrograms, which are effective for the diagnostic analysis by using CNN. Comparatively, the thermal images were directly analyzed using CNN. The effectiveness of the CNN-based diagnosis methods was investigated through the analysis of different experimental data, i.e., vibration, acoustic signals and thermal images, which were collected from a test rig where different types of faults are induced on the roller bearing and shaft. The results show that the thermal image analysis and acoustic signal analysis could achieve relatively higher accuracy rate compared to vibration analysis. Moreover, the advantage is easy-deployment because of the non-contact way during signal acquisition. With the CNN-based fault diagnosis method for the three different signals collected, the accuracy of different signal predictions for combined faults can be compared, and the effective method can be applied to fault diagnosis of other industrial rotating machinery.
文摘In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The paper is proposing a 3-Steps methodology for the machine fault diagnosis to meet the industrial requirements to aid the maintenance activity.The Step-1 identifies whether machine is healthy or faulty,then Step-2 detect the type of defect and finally its location in Step-3.This method is extended further from the earlier study on the 2-Steps method for the rotor defects only to the 3-Steps methodology to both rotor and bearing defects.The method uses the optimised vibration parameters and a simple Artificial Neural Network(ANN)-based Machine Learning(ML)model from the earlier studies.The model is initially developed,tested and validated on an experimental rotating rig operating at a speed above 1st critical speed.The proposed method and model are then further validated at 2 different operating speeds,one below 1st critical speed and other above 2nd critical speed.The machine dynamics are expected to be significantly different at these speeds.This highlights the robustness of the proposed 3-Steps method.
文摘A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault diagnosis under uncertainty. According to the theory , an inference model , named as FSL , is thus designed to be devoted to the building of a fault diagnosis expert system for rotating machinery (ROSLES) . The system is put into operation on a vibration simula- tor stand for 300 MW turbine generator set ( 1 : 1 0) and satisfactory results are gained.
文摘With the help of the feedforward neural network diagnostic method, the hybrid diagnostic networks corresponding to information in multiple symptom domains are built and the comprehensive judgment is carried out with weighted average method. Meanwhile, this method has the ability of self learning and self adaptation in order to adapt both the complexity of vibrations produced practically and the pluralistic potent of vibration symptoms induced really for large rotating machinery, especially for turbogenerators. The reliability and precision of diagnosis with this method is heightened. It seems that the method can take more practical value in engineering applications.
文摘针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故障诊断中。首先,在采集的振动信号中增加不同强度的噪声,再经DFIF分解得到若干个本征模态函数(intrinsic mode function,IMF)分量,选取综合评价指标值最小的IMF分量作为输入样本;其次,提出了自适应残差单元(adaptive residual building unit,ARBU),ARBU通过计算各个通道的最优系数,自适应地放大故障敏感特征和抑制无关特征,能够更好地替代传统的残差单元;最后,基于ARBU构造AResNet,输入样本经过AResNet得到故障诊断结果。将所提方法应用于噪声背景下旋转机械的故障诊断中,在两个不同数据集中进行了验证。研究结果表明,与现有方法相比,所提方法具有更高的噪声鲁棒性、稳定性和更优的计算效率,且能够更好地解决旋转机械在噪声背景下故障特征难以有效挖掘的问题。