期刊文献+
共找到744篇文章
< 1 2 38 >
每页显示 20 50 100
Research on Rotating Machinery Fault Diagnosis Based on Improved Multi-target Domain Adversarial Network
1
作者 Haitao Wang Xiang Liu 《Instrumentation》 2024年第1期38-50,共13页
Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery... Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization. 展开更多
关键词 multi-target domain domain-adversarial neural networks transfer learning rotating machinery fault diagnosis
下载PDF
A Method of Rotating Machinery Fault Diagnosis Based on the Close Degree of Information Entropy 被引量:1
2
作者 GENG Jun-bao HUANG Shu-hong +2 位作者 JIN Jia-shan CHEN Fei LIU Wei 《International Journal of Plant Engineering and Management》 2006年第3期137-144,共8页
This paper presents a method of rotating machinery fault diagnosis based on the close degree of information entropy. In the view of the information entropy, we introduce four information entropy features of the rotati... This paper presents a method of rotating machinery fault diagnosis based on the close degree of information entropy. In the view of the information entropy, we introduce four information entropy features of the rotating machinery, which describe the vibration condition of the machinery. The four features are, respectively, denominated as singular spectrum entropy, power spectrum entropy, wavelet space state feature entropy and wavelet power spectrum entropy. The value scopes of the four information entropy features of the rotating machinery in some typical fault conditions are gained by experiments, which can be acted as the standard features of fault diagnosis. According to the principle of the shorter distance between the more similar models, the decision-making method based on the close degree of information entropy is put forward to deal with the recognition of fault patterns. We demonstrate the effectiveness of this approach in an instance involving the fault pattern recognition of some rotating machinery. 展开更多
关键词 rotating machinery fault diagnosis information entropy close degree
下载PDF
2D-HIDDEN MARKOV MODEL FEATURE EXTRACTION STRATEGY OF ROTATING MACHINERY FAULT DIAGNOSIS 被引量:1
3
作者 YE Dapeng DING Qiquan WU Zhaotong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期156-158,共3页
A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tes... A new feature extraction method based on 2D-hidden Markov model(HMM) is proposed. Meanwhile the time index and frequency index are introduced to represent the new features. The new feature extraction strategy is tested by the experimental data that collected from Bently rotor experiment system. The results show that this methodology is very effective to extract the feature of vibration signals in the rotor speed-up course and can be extended to other non-stationary signal analysis fields in the future. 展开更多
关键词 fault diagnosis rotating machinery 2D-hidden Markov model(HMM)Feature extraction
下载PDF
Compound Fault Diagnosis for Rotating Machinery:State-of-the-Art,Challenges,and Opportunities 被引量:4
4
作者 Ruyi Huang Jingyan Xia +2 位作者 Bin Zhang Zhuyun Chen Weihua Li 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第1期13-29,共17页
Compound fault,as a primary failure leading to unexpected downtime of rotating machinery,dramatically increases the difficulty in fault diagnosis.To deal with the difficulty encountered in implementing compound fault ... Compound fault,as a primary failure leading to unexpected downtime of rotating machinery,dramatically increases the difficulty in fault diagnosis.To deal with the difficulty encountered in implementing compound fault diagnosis(CFD),researchers and engineers from industry and academia have made numerous significant breakthroughs in recent years.Admittedly,many systematic surveys focused on fault diagnosis have been conducted by reputable researchers.Nevertheless,previous review articles paid more attention to fault diagnosis with several single or independent faults,resulting in that there is still lacking a comprehensive survey on CFD.Therefore,to fulfill the above requirements,it is necessary to provide an in-depth overview of fault diagnosis methods or algorithms for compound faults of rotating machinery and uncover potential challenges or opportunities that would guide and inspire readers to devote their efforts to promoting fault diagnosis technology more effective and practical.Specifically,the backgrounds,including the related definitions and a new taxonomy of CFD methods,are detailed according to the way of implementing compound fault recognition.Then,the stateof-the-art applications of CFD are overviewed based on relevant publications in the past decades.Finally,the challenges and opportunities associated with implementing CFD are concluded and followed by a conclusion for ending this survey.We believe that this review article can provide a systematic guideline of CFD from different aspects for potential readers and seasoned researchers. 展开更多
关键词 fault diagnosis compound fault signal processing artificial intelligence rotating machinery
下载PDF
On Fault Diagnosis of Rotating Machinery Using Wavelet Time-division Scale Level Moment 被引量:2
5
作者 YANG Tao ZHANG Yan-ping GAO Wei HUANG Shu-hong ZHANG Pin-ting 《International Journal of Plant Engineering and Management》 2008年第2期61-69,共9页
Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ... Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ability of a time-division scale level moment. The analysis results in the caculation of six typical fault signals show that the time-division scale level moment can be used to display the detailed information of a wavelet gray level image, extract the signal's characteristics effectively, and distinguish the vibration fault. Compared to the method of a wave gray moment vector, the method mentioned in this paper can provide higher calculation speed and higher capacity of fault identification, so it is more suitable for online fault diagnosis for rotating machinery. 展开更多
关键词 fault diagnosis wavelet transform wavelet gray moment wavelet gray moment vector time-division scale level moment rotating machinery
下载PDF
Application of Kernel GDA to Performance Monitoring and Fault Diagnosis for Rotating Machinery
6
作者 马思乐 张曦 邵惠鹤 《Journal of Donghua University(English Edition)》 EI CAS 2010年第5期709-714,共6页
Faults in rotating machine are difficult to detect and identify,especially when the system is complex and nonlinear.In order to solve this problem,a novel performance monitoring and fault diagnosis method based on ker... Faults in rotating machine are difficult to detect and identify,especially when the system is complex and nonlinear.In order to solve this problem,a novel performance monitoring and fault diagnosis method based on kernel generalized discriminant analysis(kernel GDA,KGDA)was proposed.Through KGDA,the data were mapped from the original space to the high-dimensional feature space.Then the statistic distance between normal data and test data was constructed to detect whether a fault was occurring.If a fault had occurred,similar analysis was used to identify the type of faults.The effectiveness of the proposed method was evaluated by simulation results of vibration signal fault dataset in the rotating machinery,which was scalable to different rotating machinery. 展开更多
关键词 kernel generalized discriminant analysis(KGDA) performance monitoring fault diagnosis rotating machinery
下载PDF
An Approach to Fault Diagnosis of Rotating Machinery Using the Second-Order Statistical Features of Thermal Images and Simplified Fuzzy ARTMAP
7
作者 Faisal Al Thobiani Van Tung Tran Tiedo Tinga 《Engineering(科研)》 2017年第6期524-539,共16页
Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the mach... Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the machine’s operating condition through its temperature. In this paper, an investigation of using the second-order statistical features of thermogram in association with minimum redundancy maximum relevance (mRMR) feature selection and simplified fuzzy ARTMAP (SFAM) classification is conducted for rotating machinery fault diagnosis. The thermograms of different machine conditions are firstly preprocessed for improving the image contrast, removing noise, and cropping to obtain the regions of interest (ROIs). Then, an enhanced algorithm based on bi-dimensional empirical mode decomposition is implemented to further increase the quality of ROIs before the second-order statistical features are extracted from their gray-level co-occurrence matrix (GLCM). The highly relevant features to the machine condition are selected from the total feature set by mRMR and are fed into SFAM to accomplish the fault diagnosis. In order to verify this investigation, the thermograms acquired from different conditions of a fault simulator including normal, misalignment, faulty bearing, and mass unbalance are used. This investigation also provides a comparative study of SFAM and other traditional methods such as back-propagation and probabilistic neural networks. The results show that the second-order statistical features used in this framework can provide a plausible accuracy in fault diagnosis of rotating machinery. 展开更多
关键词 Thermal Images SECOND-ORDER Statistical Features Gray-Level CO-OCCURRENCE Matrix Minimum Redundancy Maximum RELEVANCE rotating machinery fault diagnosis Simplified Fuzzy ARTMAP
下载PDF
FAULT DIAGNOSIS OF ROTATING MACHINERY USING KNOWLEDGE-BASED FUZZY NEURAL NETWORK 被引量:2
8
作者 李如强 陈进 伍星 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第1期99-108,共10页
A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from ... A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks. 展开更多
关键词 rotating machinery fault diagnosis rough sets theory fuzzy sets theory generic algorithm knowledge-based fuzzy neural network
下载PDF
Fault Feature Extraction of Rotating Machinery Based on Wavelet Transformation and Multi-resolution Analysis
9
作者 公茂法 刘庆雪 +1 位作者 刘明 张晓丽 《Journal of Measurement Science and Instrumentation》 CAS 2010年第4期312-314,共3页
This paper expounded in detail the principle of energy spectrum analysis based on discrete wavelet transformation and multiresolution analysis. In the aspect of feature extraction method study, with investigating the ... This paper expounded in detail the principle of energy spectrum analysis based on discrete wavelet transformation and multiresolution analysis. In the aspect of feature extraction method study, with investigating the feature of impact factor in vibration signals and considering the non-placidity and non-linear of vibration diagnosis signals, the authors import wavelet analysis and fractal theory as the tools of faulty signal feature description. Experimental results proved the validity of this method. To some extent, this method provides a good approach of resolving the wholesome problem of fault feature symptom description. 展开更多
关键词 discrete wavelet transform (DWT) multi-resolution analysis fault diagnosis rotating madchinery feature extraction
下载PDF
Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning
10
作者 Jie LIU Kaibo ZHOU +1 位作者 Chaoying YANG Guoliang LU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2021年第4期829-839,共11页
Existing fault diagnosis methods usually assume that there are balanced training data for every machine health state.However,the collection of fault signals is very difficult and expensive,resulting in the problem of ... Existing fault diagnosis methods usually assume that there are balanced training data for every machine health state.However,the collection of fault signals is very difficult and expensive,resulting in the problem of imbalanced training dataset.It will degrade the performance of fault diagnosis methods significantly.To address this problem,an imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning is proposed in this paper.Unsupervised autoencoder is firstly used to compress every monitoring signal into a low-dimensional vector as the node attribute in the SuperGraph.And the edge connections in the graph depend on the relationship between signals.On the basis,graph convolution is performed on the constructed SuperGraph to achieve imbalanced training dataset fault diagnosis for rotating machinery.Comprehensive experiments are conducted on a benchmarking publicized dataset and a practical experimental platform,and the results show that the proposed method can effectively achieve rotating machinery fault diagnosis towards imbalanced training dataset through graph feature learning. 展开更多
关键词 imbalanced fault diagnosis graph feature learning rotating machinery autoencoder
原文传递
Application of local wave ti me-frequency method in reciprocating mechanical fault diagnosis
11
作者 Wang Lei Wang Fengtao Ma Xiaojiang 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第z1期380-381,共2页
To diagnosethe reciprocating mechanical fault.We utilizedlocal waveti me-frequency approach.Firstly,we gave the principle.Secondly,the application of local wave ti me-frequency was given.Finally,we discusseditsvirtue ... To diagnosethe reciprocating mechanical fault.We utilizedlocal waveti me-frequency approach.Firstly,we gave the principle.Secondly,the application of local wave ti me-frequency was given.Finally,we discusseditsvirtue in reciprocating mechanical fault diagnosis. 展开更多
关键词 LOCAL WAVE method TIME-FREQUENCY analysis fault diagnosis
下载PDF
Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging 被引量:18
12
作者 Yongbo LI Xiaoqiang DU +2 位作者 Fangyi WAN Xianzhi WANG Huangchao YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第2期427-438,共12页
Rotating machinery is widely applied in industrial applications.Fault diagnosis of rotating machinery is vital in manufacturing system,which can prevent catastrophic failure and reduce financial losses.Recently,Deep L... Rotating machinery is widely applied in industrial applications.Fault diagnosis of rotating machinery is vital in manufacturing system,which can prevent catastrophic failure and reduce financial losses.Recently,Deep Learning(DL)-based fault diagnosis method becomes a hot topic.Convolutional Neural Network(CNN)is an effective DL method to extract the features of raw data automatically.This paper develops a fault diagnosis method using CNN for InfRared Thermal(IRT)image.First,IRT technique is utilized to capture the IRT images of rotating machinery.Second,the CNN is applied to extract fault features from the IRT images.In the end,the obtained features are fed into the Softmax Regression(SR)classifier for fault pattern identification.The effectiveness of the proposed method is validated using two different experimental data.Results show that the proposed method has a superior performance in identification various faults on rotor and bearings comparing with other deep learning models and traditional vibration-based method. 展开更多
关键词 Convolutional NEURAL network Feature extraction Infrared thermography(IRT) Intelligent fault diagnosis rotating machinery
原文传递
Improved CICA Algorithm Used for Single Channel Compound Fault Diagnosis of Rolling Bearings 被引量:13
13
作者 CHEN Guohua QIE Longfei +1 位作者 ZHANG Aijun HAN Jin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期204-211,共8页
A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envel... A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to realize single channel compound fault diagnosis of bearings and improve the diagnosis accuracy, an improved CICA algorithm named constrained independent component analysis based on the energy method (E-CICA) is proposed. With the approach, the single channel vibration signal is firstly decomposed into several wavelet coefficients by discrete wavelet transform(DWT) method for the purpose of obtaining multichannel signals. Then the envelope signals of the reconstructed wavelet coefficients are selected as the input of E-CICA algorithm, which fulfills the requirements that the number of sensors is greater than or equal to that of the source signals and makes it more suitable to be processed by CICA strategy. The frequency energy ratio(ER) of each wavelet reconstructed signal to the total energy of the given synchronous signal is calculated, and then the synchronous signal with maximum ER value is set as the reference signal accordingly. By this way, the reference signal contains a priori knowledge of fault source signal and the influence on fault signal extraction accuracy which is caused by the initial phase angle and the duty ratio of the reference signal in the traditional CICA algorithm is avoided. Experimental results show that E-CICA algorithm can effectively separate out the outer-race defect and the rollers defect from the single channel compound fault and fulfill the needs of compound fault diagnosis of rolling bearings, and the running time is 0.12% of that of the traditional CICA algorithm and the extraction accuracy is 1.4 times of that of CICA as well. The proposed research provides a new method to separate single channel compound fault signals. 展开更多
关键词 compound fault diagnosis energy method constrained independent component analysis(CICA) diserete wavelet transform(DWT)
下载PDF
Comparative Study of Combined Fault Diagnosis Schemes Based on Convolutional Neural Network
14
作者 Mei Li Zhiqiang Huo +1 位作者 Fabien CAUS Yu Zhang 《国际计算机前沿大会会议论文集》 2019年第1期679-681,共3页
In this paper, comparative combined fault diagnosis schemes are studied including vibration analysis, acoustic signal analysis and thermal image analysis based on the Convolutional Neural Network (CNN). The advantage ... In this paper, comparative combined fault diagnosis schemes are studied including vibration analysis, acoustic signal analysis and thermal image analysis based on the Convolutional Neural Network (CNN). The advantage of the CNN structure is that it does not need manual feature extraction or selection, which requires prior knowledge of specific machinery dynamics. The vibration and acoustic signals were transformed into spectrograms, which are effective for the diagnostic analysis by using CNN. Comparatively, the thermal images were directly analyzed using CNN. The effectiveness of the CNN-based diagnosis methods was investigated through the analysis of different experimental data, i.e., vibration, acoustic signals and thermal images, which were collected from a test rig where different types of faults are induced on the roller bearing and shaft. The results show that the thermal image analysis and acoustic signal analysis could achieve relatively higher accuracy rate compared to vibration analysis. Moreover, the advantage is easy-deployment because of the non-contact way during signal acquisition. With the CNN-based fault diagnosis method for the three different signals collected, the accuracy of different signal predictions for combined faults can be compared, and the effective method can be applied to fault diagnosis of other industrial rotating machinery. 展开更多
关键词 fault diagnosis rotating machinery Convolutional NEURAL networks
下载PDF
A Comprehensive 3-Steps Methodology for Vibration-Based Fault Detection,Diagnosis and Localization in Rotating Machines
15
作者 Khalid M.Almutairi Jyoti K.Sinha 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第1期49-58,共10页
In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The pape... In any industry,it is the requirement to know whether the machine is healthy or not to operate machine further.If the machine is not healthy then what is the fault in the machine and then finally its location.The paper is proposing a 3-Steps methodology for the machine fault diagnosis to meet the industrial requirements to aid the maintenance activity.The Step-1 identifies whether machine is healthy or faulty,then Step-2 detect the type of defect and finally its location in Step-3.This method is extended further from the earlier study on the 2-Steps method for the rotor defects only to the 3-Steps methodology to both rotor and bearing defects.The method uses the optimised vibration parameters and a simple Artificial Neural Network(ANN)-based Machine Learning(ML)model from the earlier studies.The model is initially developed,tested and validated on an experimental rotating rig operating at a speed above 1st critical speed.The proposed method and model are then further validated at 2 different operating speeds,one below 1st critical speed and other above 2nd critical speed.The machine dynamics are expected to be significantly different at these speeds.This highlights the robustness of the proposed 3-Steps method. 展开更多
关键词 bearing faults fault diagnosis machine learning rotating machines rotor faults vibration analysis
下载PDF
FAULT DIAGNOSIS EXPERT SYSTEM FOR ROTATING MACHINERY BASED ON A FUZZY PROBABILITY LOGIC INFERENCE MODEL
16
作者 Xiong Guoliang Zuo Huijing (East China Jiaotong University) (Shanghai Jiaotong University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1996年第4期325-330,共2页
A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault d... A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault diagnosis under uncertainty. According to the theory , an inference model , named as FSL , is thus designed to be devoted to the building of a fault diagnosis expert system for rotating machinery (ROSLES) . The system is put into operation on a vibration simula- tor stand for 300 MW turbine generator set ( 1 : 1 0) and satisfactory results are gained. 展开更多
关键词 Expert system fault diagnosis rotating machinery Fuzzy probabil- ity logic
全文增补中
Study on Fault Diagnosis of Rotating Machinery with Hybrid Neural Networks
17
作者 臧朝平 高伟 《Journal of Southeast University(English Edition)》 EI CAS 1997年第2期68-73,共6页
With the help of the feedforward neural network diagnostic method, the hybrid diagnostic networks corresponding to information in multiple symptom domains are built and the comprehensive judgment is carried out with w... With the help of the feedforward neural network diagnostic method, the hybrid diagnostic networks corresponding to information in multiple symptom domains are built and the comprehensive judgment is carried out with weighted average method. Meanwhile, this method has the ability of self learning and self adaptation in order to adapt both the complexity of vibrations produced practically and the pluralistic potent of vibration symptoms induced really for large rotating machinery, especially for turbogenerators. The reliability and precision of diagnosis with this method is heightened. It seems that the method can take more practical value in engineering applications. 展开更多
关键词 HYBRID NEURAL network fault diagnosis knowledge base rotating machinery
下载PDF
A Modified Feedforward Neural Network Model for Fault Diagnosis of Rotating Machinery
18
作者 臧朝平 《Journal of Southeast University(English Edition)》 EI CAS 1997年第1期59-63,共5页
AModifiedFeedforwardNeuralNetworkModelforFaultDiagnosisofRotatingMachineryZangChaoping(臧朝平)GaoWei(高)(NERCTV... AModifiedFeedforwardNeuralNetworkModelforFaultDiagnosisofRotatingMachineryZangChaoping(臧朝平)GaoWei(高)(NERCTV,SoutheastUnivers... 展开更多
关键词 NEURAL NETWORK fault diagnosis rotating machinery
下载PDF
基于相位差的轴向磁通无铁心电机早期轻微匝间短路故障诊断 被引量:1
19
作者 王晓光 陈梦凯 +2 位作者 周一帆 岳明强 陈亚红 《河北科技大学学报》 CAS 北大核心 2024年第2期111-121,共11页
针对轴向磁通定子无铁心电机早期匝间短路故障问题,提出一种基于零序分量和定子电流分量相位差的轴向磁通定子无铁心电机的早期匝间短路故障诊断和定位方法。首先,根据定子绕组电感极小的特点建立了匝间短路故障数学模型;其次,对故障前... 针对轴向磁通定子无铁心电机早期匝间短路故障问题,提出一种基于零序分量和定子电流分量相位差的轴向磁通定子无铁心电机的早期匝间短路故障诊断和定位方法。首先,根据定子绕组电感极小的特点建立了匝间短路故障数学模型;其次,对故障前后的短路电流、相电流、零序分量等进行了傅里叶分析,通过零序电压基波幅值变化对匝间短路故障进行识别;最后,通过对比零序电压基波与定子三相电流初相位差来进行故障相定位。结果表明,匝间短路故障相的相电流基波初始相位与零序电压基波初相位差的绝对值近似180°,而健康相的相位差与180°相差较大。基于相位差可以实现轴向磁通无铁心电机早期匝间短路故障的诊断与定位,为永磁电机的匝间短路故障诊断提供了参考。 展开更多
关键词 电机学 匝间短路 无铁心电机 故障诊断 零序分量 傅里叶分析
下载PDF
基于自适应深度残差网络的旋转机械故障诊断方法
20
作者 童靳于 唐世钰 +2 位作者 郑近德 尹壮壮 潘海洋 《振动与冲击》 EI CSCD 北大核心 2024年第20期162-171,共10页
针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故... 针对深度残差网络无法在噪声环境下精确诊断的问题,提出了一种基于直接快速迭代滤波(direct fast iterative filtering,DFIF)和自适应深度残差网络(adaptive deep residual network,AResNet)的方法,并将其应用于噪声环境下旋转机械的故障诊断中。首先,在采集的振动信号中增加不同强度的噪声,再经DFIF分解得到若干个本征模态函数(intrinsic mode function,IMF)分量,选取综合评价指标值最小的IMF分量作为输入样本;其次,提出了自适应残差单元(adaptive residual building unit,ARBU),ARBU通过计算各个通道的最优系数,自适应地放大故障敏感特征和抑制无关特征,能够更好地替代传统的残差单元;最后,基于ARBU构造AResNet,输入样本经过AResNet得到故障诊断结果。将所提方法应用于噪声背景下旋转机械的故障诊断中,在两个不同数据集中进行了验证。研究结果表明,与现有方法相比,所提方法具有更高的噪声鲁棒性、稳定性和更优的计算效率,且能够更好地解决旋转机械在噪声背景下故障特征难以有效挖掘的问题。 展开更多
关键词 故障诊断 旋转机械 深度残差网络 直接快速迭代滤波(DFIF) 噪声环境
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部