Rotating packed bed(RPB) is one of the most effective gas–liquid mass transfer enhancement reactors, its effective specific mass transfer area(ae) is critical to understand the mass transfer process. By using the NaO...Rotating packed bed(RPB) is one of the most effective gas–liquid mass transfer enhancement reactors, its effective specific mass transfer area(ae) is critical to understand the mass transfer process. By using the NaOH–CO_(2) chemical absorption method, the aevalues of three RPB reactors with different rotor sizes were measured under different operation conditions. The results showed that the high gravity factor and liquid flow rate were major affecting factors, while the gas flow rate exhibited minor influence.The radius of packing is the dominant equipment factor to affect aevalue. The results indicated that the contact area depends on the dispersion of the liquid phase, thus the centrifugal force of rotating packed bed greatly influenced the aevalue. Moreover, the measured ae/ap(effective specific mass transfer area/specific surface area of packing) values were fitted with dimensionless correlation formulas. The unified correlation formula with dimensionless bed size parameter can well predict the experimental data and the prediction errors were within 15%.展开更多
The performance of a rotating packed bed (RPter solutioB) with three kinds of packings was investigated using alcohol/wan under continuous distillation conditions at atmospheric pressure. The effects of average high...The performance of a rotating packed bed (RPter solutioB) with three kinds of packings was investigated using alcohol/wan under continuous distillation conditions at atmospheric pressure. The effects of average high gravity factor (β), reflux ratio (R), and feedstock flux (F) on mass-transfer in distillation were examined separately. Experimental results indicated that the total number of theoretical units (NTU) of RPB increased with β, R, and F.Of the three kinds of packings, the wave thread packing of stainless steel (Packing-Ⅲ)-had the best mass transfer efficiency with the height equivalent of a theoretical plate (HETP) of approximately 7.35 mm- 23.58 ram, whereas the corrugated disk pacing of stainless steel,(Packing Ⅰ) had the worst one with the HETP of about 13.4 mm-48.07 mm.Correlations were cleveloped to describe the mass transfer efficiency for packings Comparing.experimental data with the data calculated by correlation, the average deviate obtained for each packing was 0.72%, 1.98%, and 2.7%, respectively, implying that the accuracy of correlations developed was reasonable.展开更多
For an alcohol/water system and with fin baffle packing,continuous distillation experiments were carried out in a rotating packed bed(RPB)system at atmospheric pressure.The effects of the average high gravity factor(...For an alcohol/water system and with fin baffle packing,continuous distillation experiments were carried out in a rotating packed bed(RPB)system at atmospheric pressure.The effects of the average high gravity factor(β),liquid reflux ratio(R)and feedstock flux(F)on the momentum transfer and mass transfer were investigated. The gas phase pressure drop of RPB increased with the average high gravity factor,liquid reflux ratio and feedstock flux,which was 13.55-64.37 Pa atβof 2.01-51.49,R of 1.0-2.5,and F of 8-24 L·h1for a theoretical tray in the RPB with fin baffle packing.The investigation on the mass transfer in the RPB with different packings showed that the number of transfer units of RPB with a packing also increased with the average high gravity factor,reflux ratio and feedstock flux.It is found that the fin baffle packing(packing III)presents the best mass transfer performance and lowest pressure drop for the height equivalent to a theoretical plate(HETP),which is 6.59-9.84 mm.展开更多
Absorption of NOx into nitric acid solutions was studied in the presence of ozone by using a rotating packed bed(RPB) contactor.The influences of operating parameters,such as high gravity number,amount of ozone,gas ve...Absorption of NOx into nitric acid solutions was studied in the presence of ozone by using a rotating packed bed(RPB) contactor.The influences of operating parameters,such as high gravity number,amount of ozone,gas velocity,liquid spray density and inlet concentration of NOx,on the removal efficiency of NOx were investigated,among which the high gravity number and ozone amount are more important.Ozone was introduced to oxidize HNO2 to HNO3 to prevent the decomposition of HNO2 in the liquid phase.The high gravity number presents the effective external force for enhancing the mass transfer of ozone from gas phase to liquid phase.Under the experimental condition,the removal efficiency of NOx is higher than 90%and the concentration of nitric acid product exceeds 45%.展开更多
Absorption of SO2 from a SO2/air mixture with sodium citrate buffer solution was investigated using a rotating packed bed(RPB) in laboratory scale.The effects of operating parameters,such as the rotation speed of RPB,...Absorption of SO2 from a SO2/air mixture with sodium citrate buffer solution was investigated using a rotating packed bed(RPB) in laboratory scale.The effects of operating parameters,such as the rotation speed of RPB,liquid-gas ratio,inlet gas flow rate,inlet concentration of SO2 in flue gas,sodium citrate buffer concentration and initial pH of absorption solution,on the SO2 concentration in the absorption solution or removal efficiency of SO2 were examined.Incremental rate of sulfate radical ions in the absorption solution was also examined.Experimental results indicate that the efficiency of this regenerative process will be improved by using RPB under appropriate operating conditions,and the generation of SO2-4 will be restrained in the process in RPB.展开更多
A mass transfer model for devolatilization process of highly viscous media in rotating packed bed(RPB) was developed based on penetration theory and mass conservation.Before establishing the model,some mass transfer e...A mass transfer model for devolatilization process of highly viscous media in rotating packed bed(RPB) was developed based on penetration theory and mass conservation.Before establishing the model,some mass transfer experiments of thin film were conducted in a designed diffusion cell including vacuum and feeding system. In this study,acetone was used as the volatile organic compound(VOC) and syrup as the highly viscous media.The thickness of thin film was changed by using different liquid distributor.It was found that bubbling played an important role in the devolatilization.The correlation of diffusion coefficient of acetone in highly viscous dilute solution was proposed.The relative error between predicted and experimental data was within the range of ± 30% for diffusion coefficient of acetone in syrup.A comparison of experimental data of RPB with model indicated that the relative error was within ± 30% for efficiency of acetone removal.展开更多
The removal of a volatile organic compound (VOC) from high viscous liquid was carried out in a rotat-ing packed bed (RPB) in this study. The mixed liquid of syrup and acetone was used as simulated high viscous polymer...The removal of a volatile organic compound (VOC) from high viscous liquid was carried out in a rotat-ing packed bed (RPB) in this study. The mixed liquid of syrup and acetone was used as simulated high viscous polymer solution with acetone as the volatile compound. The influence of the rotating speed of RPB, liquid viscos-ity, liquid flow rate, vacuum degree, and initial acetone content in the liquid on acetone removal efficiency was in-vestigated. The experimental results indicated that the removal efficiency increased with increasing rotating speed and initial acetone content in the viscous liquid and decreased with increasing liquid viscosity and flow rate. It was also observed that acetone removal efficiency increased with an increasing vacuum degree and reached 58% at a vacuum degree of 0.1 MPa. By the comparison with a flash tank devolatilizer, it was found that acetone removal ef-ficiency in RPB increased by about 67%.展开更多
Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly throug...Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly through experiments is difficult because of the compact structure and complex multiphase flow pattern in RPB. To study the mixing characteristic, Fluent, the computational fluid dynamics(CFD) software, was used to explore the effect of airflow field on droplet diameter. For conducting calculations, the gas-liquid two-phase flow inside the packing was simulated with the RNG k-ε turbulence model and the Lagrange Discrete Phase Model(DPM), respectively. The numerical calculation results showed that coalescence and breakup of droplets can take place in the gas phase flow inside the packing and can be strengthened with increased rotating speed, thereby leading to the enlargement of the average diameter.展开更多
NaY Zeolite was synthesized in a rotating packed bed (RPB) for the first time. A Si-A1 gel with a specific composition was used as the structure-directing agent. The as-synthesized NaY Zeolite was characterized with...NaY Zeolite was synthesized in a rotating packed bed (RPB) for the first time. A Si-A1 gel with a specific composition was used as the structure-directing agent. The as-synthesized NaY Zeolite was characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD) and specific surface area (BET). The characterization result showed that the NaY Zeolite had a particle size of approximately 200 rim, n(SiO2)/n(Al203) ratio of 5.03, crystallinity of 96% and specific surface area of 714 m2/g. The experimental results indicated that the structure of NaY Zeolite was related to the synthesis conditions (such as reactors, crystallization time and so on). The micromixing efficiency was proven to be the most important factor for synthesis of NaY Zeolite in the high-gravity environment in RPB.展开更多
The rotating packed bed(RPB)has been widely used in gas-liquid flow systems as a process intensification device,exhibiting excellent mass transfer enhancement characteristics.However,the complex internal structure and...The rotating packed bed(RPB)has been widely used in gas-liquid flow systems as a process intensification device,exhibiting excellent mass transfer enhancement characteristics.However,the complex internal structure and the high-speed rotation of the rotor in RPB bring significant challenges to study the intensification mechanism by experiment methods.In the past two decades,Computational fluid dynamics(CFD)has been gradually applied to simulate the hydrodynamics and mass transfer characteristics in RPB and instruct the reactor design.This article covers the development of the CFD simulation of gasliquid flow in RPB.Firstly,the improvement of the simulation method in the aspect of mathematical models,geometric models,and solving methods is introduced.Secondly,new progress of CFD simulation about hydrodynamic and mass transfer characteristics in RPB is reviewed,including pressure drop,velocity distribution,flow pattern,and concentration distribution,etc.Some new phenomena such as the end effect area with the maximum turbulent have been revealed by this works.In addition,the exploration of developing new reactor structures by CFD simulation is introduced and it is proved that such new structures are competitive to different applications.The defects of current research and future development directions are also discussed at last.展开更多
This study investigated catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-MnCu/γ-Al_(2)O_(3)(Cat)in a rotating packed bed(RPB)for the first time.The results showed that the value of the overal...This study investigated catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-MnCu/γ-Al_(2)O_(3)(Cat)in a rotating packed bed(RPB)for the first time.The results showed that the value of the overall decomposition rate constant of ozone(K_(c))and overall volumetric mass transfer coefficient(K_(L)a)are 4.28×10^(-3) s^(-1) and 11.60×10^(-3) s^(-1) respectively at an initial pH of 6,βof 40,Co3(g)of 60 mg·L^(-1)and Q_(L) of 85 L·h^(-1) in deionized water,respectively.Meanwhile,the K_(c) and K_(L)a values of Fenhe water are0.88×10^(-3) s^(-1) and 2.51×10^(-3) s^(-1) lower than deionized water,respectively.In addition,the K_(c) and K_(L)a values in deionized water for the Cat/O_(3)-RPB system are 44.86%and 47.41%higher than that for the Cat/O_(3)-BR(bubbling reactor)system,respectively,indicating that the high gravity technology can facilitate the decomposition and mass transfer of ozone in heterogeneous catalytic ozonation and provide some insights into the industrial wastewater.展开更多
A mixing-precipitation model based on the modified coalescence-redispersion model was presented to describe the flow,mixing,nucleation and growth in a rotating packed bed(RPB) .The model was coupled with population ba...A mixing-precipitation model based on the modified coalescence-redispersion model was presented to describe the flow,mixing,nucleation and growth in a rotating packed bed(RPB) .The model was coupled with population balance,mass balance and crystallization kinetics.It predicted well the influence of coalescence prob-ability,which represents the mixing intensity among droplets,on the particle number density,supersaturation and mean particle size of the produced precipitates.The effects of the radial thickness of packing,liquid flow rate and rotating speed on the product particle size were also investigated.The results indicate that the needed radial length of packing is short for sparingly soluble substance precipitation(about 40-50 mm in this work) ,and the mean parti-cle size of precipitates decreases with the increase of rotating speed and liquid flow rate,respectively.The validity of this model was verified by experiment on BaSO4 precipitation in RPB.展开更多
Rotating packed bed has high efficiency of gas-liquid mass transfer.So it is significant to investigate fluid motion in rotating packed bed.Numerical simulations of the effects of packing feature size on liquid flow c...Rotating packed bed has high efficiency of gas-liquid mass transfer.So it is significant to investigate fluid motion in rotating packed bed.Numerical simulations of the effects of packing feature size on liquid flow characteristics in a rotating packed bed are reported in this paper.The particle image velocimetry is compared with the numerical simulations to validate the turbulent model.Results show that the liquid exists in the packing zone in the form of droplet and liquid line,and the cavity is droplet.When the radial thickness of the packing is less than 0.101 m,liquid line and droplets appear in the cavity.When rotational speed and radial thickness of the packing increase,the average diameter of the droplets becomes smaller,and the droplet size distribution becomes uniform.As the initial velocity of the liquid increases,the average droplet diameter increases and the uniformity of particle size distribution become worse.The droplet velocity increases with the radial thickness of the packing increasing,and gradually decreases when it reaches the cavity region.The effect of packing thickness is most substantial through linear fitting.The predicted and simulated values are within±15%.The cumulative volume distribution curves of the experimental and simulated droplets are consistent with the R-R distribution.展开更多
A rotating packed bed(RPB) reactor has substantially potential for the process intensification of heterogeneous catalytic reactions. However, the scarce knowledge of the liquid–solid mass transfer in the RPB reactor ...A rotating packed bed(RPB) reactor has substantially potential for the process intensification of heterogeneous catalytic reactions. However, the scarce knowledge of the liquid–solid mass transfer in the RPB reactor is a barrier for its design and scale-up. In this work, the liquid–solid mass transfer in a RPB reactor installed with structured foam packing was experimentally studied using copper dissolution by potassium dichromate. Effects of rotational speed, liquid and gas volumetric flow rate on the liquid–solid mass transfer coefficient(kLS) have been investigated. The correlation for predicting kLSwas proposed, and the deviation between the experimental and predicted values was within±12%. The liquid–solid volumetric mass transfer coefficient(kLSaLS) ranged from 0.04–0.14 1^-1, which was approximately 5 times larger than that in the packed bed reactor. This work lays the foundation for modeling of the RPB reactor packed with structured foam packing for heterogeneous catalytic reaction.展开更多
A two-stage blade-packing rotating packed bed(TSBP-RPB) was designed and developed for the intensification of continuous distillation. The mass transfer parameters of the TSBP-RPB were investigated using a chemisorpti...A two-stage blade-packing rotating packed bed(TSBP-RPB) was designed and developed for the intensification of continuous distillation. The mass transfer parameters of the TSBP-RPB were investigated using a chemisorption system. Continuous distillation experiments were conducted in the TSBP-RPB by the methanol–water binary system. Experimental results showed that values of the effective interfacial area and liquid-side mass transfer coefficient of the TSBP-RPB were 93–337 m^2·m^(-3) and 0.05–0.19 cm·s^(-1), respectively. The height of equivalent theoretical plate(HETP) of the TSBP-RPB ranged from 1.9 to 10 cm. Moreover, the TSBP-RPB is easy to be manufactured, which shows great potential for the application of continuous distillation.展开更多
The rotating packed bed (RPB) with split packing is a novel gas-liquid contactor, which intensifies the mass transfer processes controlled by gas-side resistance. To assess its efficacy, the mass transfer characteri...The rotating packed bed (RPB) with split packing is a novel gas-liquid contactor, which intensifies the mass transfer processes controlled by gas-side resistance. To assess its efficacy, the mass transfer characteristics with adjacent rings in counter-rotation and co-rotation modes in a split packing RPB were studied experimentally. The physical absorption system NH3-H2O was used for characterizing the gas volumetric mass transfer coeffi- cient (kyae) and the effective inteffacial area (ae) was determined by chemical absorption in the CO2-NaOH sys- tem. The variation in kyae and ae with the operating conditions is also investigated. The experimental results indicated that kyae and ae for counter-rotation of the adjacent packing rings in the split packing RPB were higher than those for co-rotation, and both counter-rotation and co-rotation of the split packing RPB were superior over conventional RPBs under the similar ooerating conditions.展开更多
The rotating packed bed(RPB), mainly including the countercurrent-flow RPB(Counter-RPB) and the crosscurrentflow RPB(Cross-RPB) that are classified from the perspective of gas-liquid contact style, is a novel process ...The rotating packed bed(RPB), mainly including the countercurrent-flow RPB(Counter-RPB) and the crosscurrentflow RPB(Cross-RPB) that are classified from the perspective of gas-liquid contact style, is a novel process intensification device. A significant measurement standard for evaluating the performance of RPB is the mass transfer effect. In order to compare the mass transfer characteristics of Counter-RPB and Cross-RPB with the same size, the liquid volumetric mass transfer coefficient(k_La_e) and effective interfacial area(a_e) were measured under identical operating conditions. Meanwhile, the comparison of comprehensive mass transfer performance was conducted using the ratio of ΔP(pressure drop) to kLae as the standard. Experimental results indicated that kLae and ae increased with the increase in liquid spray density q, gas velocity u, and high gravity factor β. Furthermore, compared with the Cross-RPB, the Counter-RPB has higher liquid volumetric mass transfer coefficient and slightly larger effective interfacial area. The experimental results of comprehensive mass transfer performance showed that the Counter-RPB had higher ΔP/k_La_e than the Cross-RPB with changes in liquid spray density and high gravity factor, and there exists a turning point at 0.71 m/s accompanied by a variation with gas velocity. Moreover, the relative error of experimental value to calculated value, which was computed by the correlative expressions of kLae, was less than 5 %. In conclusion, the mass transfer characteristics of RPB are deeply impacted by the manner in which the flows are established and the Cross-RPB would have a great potential for industrial scale-up applications.展开更多
Selective hydrogenation plays an important role in chemical industries,yet its selectivity is usually limited by the mass transfer.In this work,the enhanced hydrogenation selectivity was achieved in a rotating packed ...Selective hydrogenation plays an important role in chemical industries,yet its selectivity is usually limited by the mass transfer.In this work,the enhanced hydrogenation selectivity was achieved in a rotating packed bed(RPB)reactor with excellent mass transfer efficiency.Aiming to be used under the centrifugal filed,a monolithic catalyst Pd/c-Al_(2)O_(3)/nickel foam suiting for the shape and size of the rotor of RPB reactor was prepared by the electrophoretic deposition method.The mechanical strength of the catalyst can meet the requirement of high centrifugal force in the RPB.The hydrogenation selectivity in the RPB reactor using the 3-methyl-1-pentyn-3-ol hydrogenation system was 3–8 times higher than that in a stirred tank reactor under similar conditions.This work proves the feasibility of intensifying the selectivity of hydrogenation process in the RPB reactor.展开更多
As the core component of the rotating packing bed,packing is a place for efficient gas–liquid mixing and mass transfer.In this paper,a 3D structured packing composed of a mesh structure and a support structure was de...As the core component of the rotating packing bed,packing is a place for efficient gas–liquid mixing and mass transfer.In this paper,a 3D structured packing composed of a mesh structure and a support structure was designed.The mesh structure is a ring-shaped mesh surrounded by triangular meshes,which is stable in structure and can achieve a high degree of dispersion and aggregation of the liquid phase.The support structure is composed of ring-shaped structural units arranged at a certain angle along the axial direction,which can enhance the turbulence of the airflow while constructing regular gas-phase channels.Circumferential steel meshes of different diameters and supporting structures are alternately combined to form 3D packing,which is loaded in a layered cross-flow rotating packing bed.The results show that under the same operating conditions,the mass transfer performance of 3D packing and wire mesh packing are equivalent,and both are better than pall ring packing.Moreover,the pressure drop of 3D packing is significantly lower than that of pall ring packing and wire mesh packing.The design and implementation of packing the development presented in this paper can be used to develop special structured packing for rotating bed,which can further improve the performance of rotating packed bed(RPB).展开更多
New typical cross-flow Rotating Packed Bed(RPB)called multi-pulverizing RPB was manufactured.There is enough void in multi-pulverizing RPB,where liquid easily flows and is repeatedly pulverized by light packing,which ...New typical cross-flow Rotating Packed Bed(RPB)called multi-pulverizing RPB was manufactured.There is enough void in multi-pulverizing RPB,where liquid easily flows and is repeatedly pulverized by light packing,which decreases the material consumed,lightens the weight,and compacts the structure.Mass and heat transfer property in the new type PRB were studied by two experimental models.In the mass transfer model,the axial fan pumping gas press is only 100 Pa,mass transfer coefficient and volumetric mass transfer coefficient are similar to countercurrent RPB,which are an order quantity lager than that in the conventional packed tower.In the heat transfer experiment,the axial fan pumping gas press is only 120 Pa;volumetric heatwhich especially suits the treatment of large gas flow and lower gas pressure drop.展开更多
基金the support from the National Natural Science Foundation of China (22008157,21978178)。
文摘Rotating packed bed(RPB) is one of the most effective gas–liquid mass transfer enhancement reactors, its effective specific mass transfer area(ae) is critical to understand the mass transfer process. By using the NaOH–CO_(2) chemical absorption method, the aevalues of three RPB reactors with different rotor sizes were measured under different operation conditions. The results showed that the high gravity factor and liquid flow rate were major affecting factors, while the gas flow rate exhibited minor influence.The radius of packing is the dominant equipment factor to affect aevalue. The results indicated that the contact area depends on the dispersion of the liquid phase, thus the centrifugal force of rotating packed bed greatly influenced the aevalue. Moreover, the measured ae/ap(effective specific mass transfer area/specific surface area of packing) values were fitted with dimensionless correlation formulas. The unified correlation formula with dimensionless bed size parameter can well predict the experimental data and the prediction errors were within 15%.
基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(20060110003)
文摘The performance of a rotating packed bed (RPter solutioB) with three kinds of packings was investigated using alcohol/wan under continuous distillation conditions at atmospheric pressure. The effects of average high gravity factor (β), reflux ratio (R), and feedstock flux (F) on mass-transfer in distillation were examined separately. Experimental results indicated that the total number of theoretical units (NTU) of RPB increased with β, R, and F.Of the three kinds of packings, the wave thread packing of stainless steel (Packing-Ⅲ)-had the best mass transfer efficiency with the height equivalent of a theoretical plate (HETP) of approximately 7.35 mm- 23.58 ram, whereas the corrugated disk pacing of stainless steel,(Packing Ⅰ) had the worst one with the HETP of about 13.4 mm-48.07 mm.Correlations were cleveloped to describe the mass transfer efficiency for packings Comparing.experimental data with the data calculated by correlation, the average deviate obtained for each packing was 0.72%, 1.98%, and 2.7%, respectively, implying that the accuracy of correlations developed was reasonable.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(20060110003)the Youth Science and Technology Research Fund of Shanxi Province(2008021009-1)the Development Project Fund for Colleges and Universities of Shanxi Province(20091127)
文摘For an alcohol/water system and with fin baffle packing,continuous distillation experiments were carried out in a rotating packed bed(RPB)system at atmospheric pressure.The effects of the average high gravity factor(β),liquid reflux ratio(R)and feedstock flux(F)on the momentum transfer and mass transfer were investigated. The gas phase pressure drop of RPB increased with the average high gravity factor,liquid reflux ratio and feedstock flux,which was 13.55-64.37 Pa atβof 2.01-51.49,R of 1.0-2.5,and F of 8-24 L·h1for a theoretical tray in the RPB with fin baffle packing.The investigation on the mass transfer in the RPB with different packings showed that the number of transfer units of RPB with a packing also increased with the average high gravity factor,reflux ratio and feedstock flux.It is found that the fin baffle packing(packing III)presents the best mass transfer performance and lowest pressure drop for the height equivalent to a theoretical plate(HETP),which is 6.59-9.84 mm.
基金Supported by the Fund of Science and Technology of Shanxi for Young Scholars(2007021012)Research Project of Shanxi Provincial Science and Technology Department(20090321113)
文摘Absorption of NOx into nitric acid solutions was studied in the presence of ozone by using a rotating packed bed(RPB) contactor.The influences of operating parameters,such as high gravity number,amount of ozone,gas velocity,liquid spray density and inlet concentration of NOx,on the removal efficiency of NOx were investigated,among which the high gravity number and ozone amount are more important.Ozone was introduced to oxidize HNO2 to HNO3 to prevent the decomposition of HNO2 in the liquid phase.The high gravity number presents the effective external force for enhancing the mass transfer of ozone from gas phase to liquid phase.Under the experimental condition,the removal efficiency of NOx is higher than 90%and the concentration of nitric acid product exceeds 45%.
基金Supported by the National Natural Science Foundation of China (20572128)
文摘Absorption of SO2 from a SO2/air mixture with sodium citrate buffer solution was investigated using a rotating packed bed(RPB) in laboratory scale.The effects of operating parameters,such as the rotation speed of RPB,liquid-gas ratio,inlet gas flow rate,inlet concentration of SO2 in flue gas,sodium citrate buffer concentration and initial pH of absorption solution,on the SO2 concentration in the absorption solution or removal efficiency of SO2 were examined.Incremental rate of sulfate radical ions in the absorption solution was also examined.Experimental results indicate that the efficiency of this regenerative process will be improved by using RPB under appropriate operating conditions,and the generation of SO2-4 will be restrained in the process in RPB.
基金Supported by the National Natural Science Foundation of China(20821004 20990221) the National High Technology Research and Development Program of China(2006AA030202)+1 种基金 the Program for New Century Excellent Talents in University of China(NCET-07-0053) the National Basic Research Program of China(2009CB219903)
文摘A mass transfer model for devolatilization process of highly viscous media in rotating packed bed(RPB) was developed based on penetration theory and mass conservation.Before establishing the model,some mass transfer experiments of thin film were conducted in a designed diffusion cell including vacuum and feeding system. In this study,acetone was used as the volatile organic compound(VOC) and syrup as the highly viscous media.The thickness of thin film was changed by using different liquid distributor.It was found that bubbling played an important role in the devolatilization.The correlation of diffusion coefficient of acetone in highly viscous dilute solution was proposed.The relative error between predicted and experimental data was within the range of ± 30% for diffusion coefficient of acetone in syrup.A comparison of experimental data of RPB with model indicated that the relative error was within ± 30% for efficiency of acetone removal.
基金Supported by the National Natural Science Foundation of China (20821004)the National High Technology Research and Development Program of China (2006AA030202)the Program for New Century Excellent Talents in University of China(NCET-07-0053)
文摘The removal of a volatile organic compound (VOC) from high viscous liquid was carried out in a rotat-ing packed bed (RPB) in this study. The mixed liquid of syrup and acetone was used as simulated high viscous polymer solution with acetone as the volatile compound. The influence of the rotating speed of RPB, liquid viscos-ity, liquid flow rate, vacuum degree, and initial acetone content in the liquid on acetone removal efficiency was in-vestigated. The experimental results indicated that the removal efficiency increased with increasing rotating speed and initial acetone content in the viscous liquid and decreased with increasing liquid viscosity and flow rate. It was also observed that acetone removal efficiency increased with an increasing vacuum degree and reached 58% at a vacuum degree of 0.1 MPa. By the comparison with a flash tank devolatilizer, it was found that acetone removal ef-ficiency in RPB increased by about 67%.
基金financially supported by the Natural Science Foundations of China(No.21206153,21376229)the Excellent Youth Science and Technology Foundation of Province Shanxi of China(No.2014021007)+1 种基金the Natural Science Foundation of Shanxi Province(Grant No.2011021012,2012011008-2)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(201316)
文摘Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly through experiments is difficult because of the compact structure and complex multiphase flow pattern in RPB. To study the mixing characteristic, Fluent, the computational fluid dynamics(CFD) software, was used to explore the effect of airflow field on droplet diameter. For conducting calculations, the gas-liquid two-phase flow inside the packing was simulated with the RNG k-ε turbulence model and the Lagrange Discrete Phase Model(DPM), respectively. The numerical calculation results showed that coalescence and breakup of droplets can take place in the gas phase flow inside the packing and can be strengthened with increased rotating speed, thereby leading to the enlargement of the average diameter.
基金supported by the National Basic Research Program of China (973 Program)(No. 2004CB217804)the Science and Technology Development Project of PetroChina (050203-01-06)
文摘NaY Zeolite was synthesized in a rotating packed bed (RPB) for the first time. A Si-A1 gel with a specific composition was used as the structure-directing agent. The as-synthesized NaY Zeolite was characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD) and specific surface area (BET). The characterization result showed that the NaY Zeolite had a particle size of approximately 200 rim, n(SiO2)/n(Al203) ratio of 5.03, crystallinity of 96% and specific surface area of 714 m2/g. The experimental results indicated that the structure of NaY Zeolite was related to the synthesis conditions (such as reactors, crystallization time and so on). The micromixing efficiency was proven to be the most important factor for synthesis of NaY Zeolite in the high-gravity environment in RPB.
基金supported by the National Natural Science Foundation of China(21978011 and 21725601).
文摘The rotating packed bed(RPB)has been widely used in gas-liquid flow systems as a process intensification device,exhibiting excellent mass transfer enhancement characteristics.However,the complex internal structure and the high-speed rotation of the rotor in RPB bring significant challenges to study the intensification mechanism by experiment methods.In the past two decades,Computational fluid dynamics(CFD)has been gradually applied to simulate the hydrodynamics and mass transfer characteristics in RPB and instruct the reactor design.This article covers the development of the CFD simulation of gasliquid flow in RPB.Firstly,the improvement of the simulation method in the aspect of mathematical models,geometric models,and solving methods is introduced.Secondly,new progress of CFD simulation about hydrodynamic and mass transfer characteristics in RPB is reviewed,including pressure drop,velocity distribution,flow pattern,and concentration distribution,etc.Some new phenomena such as the end effect area with the maximum turbulent have been revealed by this works.In addition,the exploration of developing new reactor structures by CFD simulation is introduced and it is proved that such new structures are competitive to different applications.The defects of current research and future development directions are also discussed at last.
基金supported by the Specialized Research Fund for Sanjin Scholars Program of Shanxi Province(201707)Key Research&Development Plan of Shanxi Province(201903D321059)+2 种基金Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20200004)Transformation and Cultivation Projects of Scientific and Technological Achievements in Universities of Shanxi Province Institutions(2020CG040)the China National Key Project of Science and Technology “Major Science and Technology Program for Water Pollution Control and Treatment”(2018ZX07601001)。
文摘This study investigated catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-MnCu/γ-Al_(2)O_(3)(Cat)in a rotating packed bed(RPB)for the first time.The results showed that the value of the overall decomposition rate constant of ozone(K_(c))and overall volumetric mass transfer coefficient(K_(L)a)are 4.28×10^(-3) s^(-1) and 11.60×10^(-3) s^(-1) respectively at an initial pH of 6,βof 40,Co3(g)of 60 mg·L^(-1)and Q_(L) of 85 L·h^(-1) in deionized water,respectively.Meanwhile,the K_(c) and K_(L)a values of Fenhe water are0.88×10^(-3) s^(-1) and 2.51×10^(-3) s^(-1) lower than deionized water,respectively.In addition,the K_(c) and K_(L)a values in deionized water for the Cat/O_(3)-RPB system are 44.86%and 47.41%higher than that for the Cat/O_(3)-BR(bubbling reactor)system,respectively,indicating that the high gravity technology can facilitate the decomposition and mass transfer of ozone in heterogeneous catalytic ozonation and provide some insights into the industrial wastewater.
基金Supported by the National Natural Science Foundation of China(20821004 20325621) Beijing Municipal Commission of Education(JD100100403)
文摘A mixing-precipitation model based on the modified coalescence-redispersion model was presented to describe the flow,mixing,nucleation and growth in a rotating packed bed(RPB) .The model was coupled with population balance,mass balance and crystallization kinetics.It predicted well the influence of coalescence prob-ability,which represents the mixing intensity among droplets,on the particle number density,supersaturation and mean particle size of the produced precipitates.The effects of the radial thickness of packing,liquid flow rate and rotating speed on the product particle size were also investigated.The results indicate that the needed radial length of packing is short for sparingly soluble substance precipitation(about 40-50 mm in this work) ,and the mean parti-cle size of precipitates decreases with the increase of rotating speed and liquid flow rate,respectively.The validity of this model was verified by experiment on BaSO4 precipitation in RPB.
基金supported by the Key Research&Development Plan of Shanxi Province(201903D321059)Shanxi Scholarship Council of China(HGKY2019071)。
文摘Rotating packed bed has high efficiency of gas-liquid mass transfer.So it is significant to investigate fluid motion in rotating packed bed.Numerical simulations of the effects of packing feature size on liquid flow characteristics in a rotating packed bed are reported in this paper.The particle image velocimetry is compared with the numerical simulations to validate the turbulent model.Results show that the liquid exists in the packing zone in the form of droplet and liquid line,and the cavity is droplet.When the radial thickness of the packing is less than 0.101 m,liquid line and droplets appear in the cavity.When rotational speed and radial thickness of the packing increase,the average diameter of the droplets becomes smaller,and the droplet size distribution becomes uniform.As the initial velocity of the liquid increases,the average droplet diameter increases and the uniformity of particle size distribution become worse.The droplet velocity increases with the radial thickness of the packing increasing,and gradually decreases when it reaches the cavity region.The effect of packing thickness is most substantial through linear fitting.The predicted and simulated values are within±15%.The cumulative volume distribution curves of the experimental and simulated droplets are consistent with the R-R distribution.
基金supported by the National Natural Science Foundation of China(Nos.21676009 and 21725601)。
文摘A rotating packed bed(RPB) reactor has substantially potential for the process intensification of heterogeneous catalytic reactions. However, the scarce knowledge of the liquid–solid mass transfer in the RPB reactor is a barrier for its design and scale-up. In this work, the liquid–solid mass transfer in a RPB reactor installed with structured foam packing was experimentally studied using copper dissolution by potassium dichromate. Effects of rotational speed, liquid and gas volumetric flow rate on the liquid–solid mass transfer coefficient(kLS) have been investigated. The correlation for predicting kLSwas proposed, and the deviation between the experimental and predicted values was within±12%. The liquid–solid volumetric mass transfer coefficient(kLSaLS) ranged from 0.04–0.14 1^-1, which was approximately 5 times larger than that in the packed bed reactor. This work lays the foundation for modeling of the RPB reactor packed with structured foam packing for heterogeneous catalytic reaction.
基金Supported by the Fundamental Research Funds for the Central Universities(ZY1403)the National Natural Science Foundation of China(No.21406008 and No.U1462127)
文摘A two-stage blade-packing rotating packed bed(TSBP-RPB) was designed and developed for the intensification of continuous distillation. The mass transfer parameters of the TSBP-RPB were investigated using a chemisorption system. Continuous distillation experiments were conducted in the TSBP-RPB by the methanol–water binary system. Experimental results showed that values of the effective interfacial area and liquid-side mass transfer coefficient of the TSBP-RPB were 93–337 m^2·m^(-3) and 0.05–0.19 cm·s^(-1), respectively. The height of equivalent theoretical plate(HETP) of the TSBP-RPB ranged from 1.9 to 10 cm. Moreover, the TSBP-RPB is easy to be manufactured, which shows great potential for the application of continuous distillation.
基金the National Natural Science Foundation of China(21376229,21206153)
文摘The rotating packed bed (RPB) with split packing is a novel gas-liquid contactor, which intensifies the mass transfer processes controlled by gas-side resistance. To assess its efficacy, the mass transfer characteristics with adjacent rings in counter-rotation and co-rotation modes in a split packing RPB were studied experimentally. The physical absorption system NH3-H2O was used for characterizing the gas volumetric mass transfer coeffi- cient (kyae) and the effective inteffacial area (ae) was determined by chemical absorption in the CO2-NaOH sys- tem. The variation in kyae and ae with the operating conditions is also investigated. The experimental results indicated that kyae and ae for counter-rotation of the adjacent packing rings in the split packing RPB were higher than those for co-rotation, and both counter-rotation and co-rotation of the split packing RPB were superior over conventional RPBs under the similar ooerating conditions.
基金supported by the National Key R&D Program of China:The ultra-low emission control technology for coal-fired industrial boilers(2016YFC0204103)the Provincial Key R&D Program of Shanxi:R&D of the coal-fired industrial boiler smoke ultra-low emission technology and equipment(201703D111018)
文摘The rotating packed bed(RPB), mainly including the countercurrent-flow RPB(Counter-RPB) and the crosscurrentflow RPB(Cross-RPB) that are classified from the perspective of gas-liquid contact style, is a novel process intensification device. A significant measurement standard for evaluating the performance of RPB is the mass transfer effect. In order to compare the mass transfer characteristics of Counter-RPB and Cross-RPB with the same size, the liquid volumetric mass transfer coefficient(k_La_e) and effective interfacial area(a_e) were measured under identical operating conditions. Meanwhile, the comparison of comprehensive mass transfer performance was conducted using the ratio of ΔP(pressure drop) to kLae as the standard. Experimental results indicated that kLae and ae increased with the increase in liquid spray density q, gas velocity u, and high gravity factor β. Furthermore, compared with the Cross-RPB, the Counter-RPB has higher liquid volumetric mass transfer coefficient and slightly larger effective interfacial area. The experimental results of comprehensive mass transfer performance showed that the Counter-RPB had higher ΔP/k_La_e than the Cross-RPB with changes in liquid spray density and high gravity factor, and there exists a turning point at 0.71 m/s accompanied by a variation with gas velocity. Moreover, the relative error of experimental value to calculated value, which was computed by the correlative expressions of kLae, was less than 5 %. In conclusion, the mass transfer characteristics of RPB are deeply impacted by the manner in which the flows are established and the Cross-RPB would have a great potential for industrial scale-up applications.
基金supported by the National Natural Science Foundation of China(22022802 and 91934303).
文摘Selective hydrogenation plays an important role in chemical industries,yet its selectivity is usually limited by the mass transfer.In this work,the enhanced hydrogenation selectivity was achieved in a rotating packed bed(RPB)reactor with excellent mass transfer efficiency.Aiming to be used under the centrifugal filed,a monolithic catalyst Pd/c-Al_(2)O_(3)/nickel foam suiting for the shape and size of the rotor of RPB reactor was prepared by the electrophoretic deposition method.The mechanical strength of the catalyst can meet the requirement of high centrifugal force in the RPB.The hydrogenation selectivity in the RPB reactor using the 3-methyl-1-pentyn-3-ol hydrogenation system was 3–8 times higher than that in a stirred tank reactor under similar conditions.This work proves the feasibility of intensifying the selectivity of hydrogenation process in the RPB reactor.
基金Project Supported by Shanxi Scholarship Council of China(2021-120)the National Natural Science Foundation of China International(Regional)Cooperation and Exchange Project(21961160740)。
文摘As the core component of the rotating packing bed,packing is a place for efficient gas–liquid mixing and mass transfer.In this paper,a 3D structured packing composed of a mesh structure and a support structure was designed.The mesh structure is a ring-shaped mesh surrounded by triangular meshes,which is stable in structure and can achieve a high degree of dispersion and aggregation of the liquid phase.The support structure is composed of ring-shaped structural units arranged at a certain angle along the axial direction,which can enhance the turbulence of the airflow while constructing regular gas-phase channels.Circumferential steel meshes of different diameters and supporting structures are alternately combined to form 3D packing,which is loaded in a layered cross-flow rotating packing bed.The results show that under the same operating conditions,the mass transfer performance of 3D packing and wire mesh packing are equivalent,and both are better than pall ring packing.Moreover,the pressure drop of 3D packing is significantly lower than that of pall ring packing and wire mesh packing.The design and implementation of packing the development presented in this paper can be used to develop special structured packing for rotating bed,which can further improve the performance of rotating packed bed(RPB).
文摘New typical cross-flow Rotating Packed Bed(RPB)called multi-pulverizing RPB was manufactured.There is enough void in multi-pulverizing RPB,where liquid easily flows and is repeatedly pulverized by light packing,which decreases the material consumed,lightens the weight,and compacts the structure.Mass and heat transfer property in the new type PRB were studied by two experimental models.In the mass transfer model,the axial fan pumping gas press is only 100 Pa,mass transfer coefficient and volumetric mass transfer coefficient are similar to countercurrent RPB,which are an order quantity lager than that in the conventional packed tower.In the heat transfer experiment,the axial fan pumping gas press is only 120 Pa;volumetric heatwhich especially suits the treatment of large gas flow and lower gas pressure drop.