Communication between people with disabilities and people who do not understand sign language is a growing social need and can be a tedious task.One of the main functions of sign language is to communicate with each o...Communication between people with disabilities and people who do not understand sign language is a growing social need and can be a tedious task.One of the main functions of sign language is to communicate with each other through hand gestures.Recognition of hand gestures has become an important challenge for the recognition of sign language.There are many existing models that can produce a good accuracy,but if the model test with rotated or translated images,they may face some difficulties to make good performance accuracy.To resolve these challenges of hand gesture recognition,we proposed a Rotation,Translation and Scale-invariant sign word recognition system using a convolu-tional neural network(CNN).We have followed three steps in our work:rotated,translated and scaled(RTS)version dataset generation,gesture segmentation,and sign word classification.Firstly,we have enlarged a benchmark dataset of 20 sign words by making different amounts of Rotation,Translation and Scale of the ori-ginal images to create the RTS version dataset.Then we have applied the gesture segmentation technique.The segmentation consists of three levels,i)Otsu Thresholding with YCbCr,ii)Morphological analysis:dilation through opening morphology and iii)Watershed algorithm.Finally,our designed CNN model has been trained to classify the hand gesture as well as the sign word.Our model has been evaluated using the twenty sign word dataset,five sign word dataset and the RTS version of these datasets.We achieved 99.30%accuracy from the twenty sign word dataset evaluation,99.10%accuracy from the RTS version of the twenty sign word evolution,100%accuracy from thefive sign word dataset evaluation,and 98.00%accuracy from the RTS versionfive sign word dataset evolution.Furthermore,the influence of our model exists in competitive results with state-of-the-art methods in sign word recognition.展开更多
The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condit...The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.展开更多
As the research of knowledge graph(KG)is deepened and widely used,knowledge graph com-pletion(KGC)has attracted more and more attentions from researchers,especially in scenarios of in-telligent search,social networks ...As the research of knowledge graph(KG)is deepened and widely used,knowledge graph com-pletion(KGC)has attracted more and more attentions from researchers,especially in scenarios of in-telligent search,social networks and deep question and answer(Q&A).Current research mainly fo-cuses on the completion of static knowledge graphs,and the temporal information in temporal knowl-edge graphs(TKGs)is ignored.However,the temporal information is definitely very helpful for the completion.Note that existing researches on temporal knowledge graph completion are difficult to process temporal information and to integrate entities,relations and time well.In this work,a rotation and scaling(RotatS)model is proposed,which learns rotation and scaling transformations from head entity embedding to tail entity embedding in 3D spaces to capture the information of time and rela-tions in the temporal knowledge graph.The performance of the proposed RotatS model have been evaluated by comparison with several baselines under similar experimental conditions and space com-plexity on four typical knowl good graph completion datasets publicly available online.The study shows that RotatS can achieve good results in terms of prediction accuracy.展开更多
This paper proposes a new set of 3D rotation scaling and translation invariants of 3D radially shifted Legendre moments. We aim to develop two kinds of transformed shifted Legendre moments: a 3D substituted radial sh...This paper proposes a new set of 3D rotation scaling and translation invariants of 3D radially shifted Legendre moments. We aim to develop two kinds of transformed shifted Legendre moments: a 3D substituted radial shifted Legendre moments (3DSRSLMs) and a 3D weighted radial one (3DWRSLMs). Both are centered on two types of polynomials. In the first case, a new 3D ra- dial complex moment is proposed. In the second case, new 3D substituted/weighted radial shifted Legendremoments (3DSRSLMs/3DWRSLMs) are introduced using a spherical representation of volumetric image. 3D invariants as derived from the sug- gested 3D radial shifted Legendre moments will appear in the third case. To confirm the proposed approach, we have resolved three is- sues. To confirm the proposed approach, we have resolved three issues: rotation, scaling and translation invariants. The result of experi- ments shows that the 3DSRSLMs and 3DWRSLMs have done better than the 3D radial complex moments with and without noise. Sim- ultaneously, the reconstruction converges rapidly to the original image using 3D radial 3DSRSLMs and 3DWRSLMs, and the test of 3D images are clearly recognized from a set of images that are available in Princeton shape benchmark (PSB) database for 3D image.展开更多
基金This work was supported by the Competitive Research Fund of The University of Aizu,Japan.
文摘Communication between people with disabilities and people who do not understand sign language is a growing social need and can be a tedious task.One of the main functions of sign language is to communicate with each other through hand gestures.Recognition of hand gestures has become an important challenge for the recognition of sign language.There are many existing models that can produce a good accuracy,but if the model test with rotated or translated images,they may face some difficulties to make good performance accuracy.To resolve these challenges of hand gesture recognition,we proposed a Rotation,Translation and Scale-invariant sign word recognition system using a convolu-tional neural network(CNN).We have followed three steps in our work:rotated,translated and scaled(RTS)version dataset generation,gesture segmentation,and sign word classification.Firstly,we have enlarged a benchmark dataset of 20 sign words by making different amounts of Rotation,Translation and Scale of the ori-ginal images to create the RTS version dataset.Then we have applied the gesture segmentation technique.The segmentation consists of three levels,i)Otsu Thresholding with YCbCr,ii)Morphological analysis:dilation through opening morphology and iii)Watershed algorithm.Finally,our designed CNN model has been trained to classify the hand gesture as well as the sign word.Our model has been evaluated using the twenty sign word dataset,five sign word dataset and the RTS version of these datasets.We achieved 99.30%accuracy from the twenty sign word dataset evaluation,99.10%accuracy from the RTS version of the twenty sign word evolution,100%accuracy from thefive sign word dataset evaluation,and 98.00%accuracy from the RTS versionfive sign word dataset evolution.Furthermore,the influence of our model exists in competitive results with state-of-the-art methods in sign word recognition.
基金supported by the National Natural Science Foundation of China(62101099)the Chinese Postdoctoral Science Foundation(2021M690558,2022T150100,2018M633352,2019T120825)+3 种基金the Young Elite Scientist Sponsorship Program(YESS20200082)the Aeronautical Science Foundation of China(2022Z017080001)the Open Foundation of Science and Technology on Electronic Information Control Laboratorythe Natural Science Foundation of Sichuan Province(2023NSFSC1386)。
文摘The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.
基金the National Natural Science Foundation of China(No.6187022153).
文摘As the research of knowledge graph(KG)is deepened and widely used,knowledge graph com-pletion(KGC)has attracted more and more attentions from researchers,especially in scenarios of in-telligent search,social networks and deep question and answer(Q&A).Current research mainly fo-cuses on the completion of static knowledge graphs,and the temporal information in temporal knowl-edge graphs(TKGs)is ignored.However,the temporal information is definitely very helpful for the completion.Note that existing researches on temporal knowledge graph completion are difficult to process temporal information and to integrate entities,relations and time well.In this work,a rotation and scaling(RotatS)model is proposed,which learns rotation and scaling transformations from head entity embedding to tail entity embedding in 3D spaces to capture the information of time and rela-tions in the temporal knowledge graph.The performance of the proposed RotatS model have been evaluated by comparison with several baselines under similar experimental conditions and space com-plexity on four typical knowl good graph completion datasets publicly available online.The study shows that RotatS can achieve good results in terms of prediction accuracy.
文摘This paper proposes a new set of 3D rotation scaling and translation invariants of 3D radially shifted Legendre moments. We aim to develop two kinds of transformed shifted Legendre moments: a 3D substituted radial shifted Legendre moments (3DSRSLMs) and a 3D weighted radial one (3DWRSLMs). Both are centered on two types of polynomials. In the first case, a new 3D ra- dial complex moment is proposed. In the second case, new 3D substituted/weighted radial shifted Legendremoments (3DSRSLMs/3DWRSLMs) are introduced using a spherical representation of volumetric image. 3D invariants as derived from the sug- gested 3D radial shifted Legendre moments will appear in the third case. To confirm the proposed approach, we have resolved three is- sues. To confirm the proposed approach, we have resolved three issues: rotation, scaling and translation invariants. The result of experi- ments shows that the 3DSRSLMs and 3DWRSLMs have done better than the 3D radial complex moments with and without noise. Sim- ultaneously, the reconstruction converges rapidly to the original image using 3D radial 3DSRSLMs and 3DWRSLMs, and the test of 3D images are clearly recognized from a set of images that are available in Princeton shape benchmark (PSB) database for 3D image.