期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Theoretical research on rotational dispersion coefficient of fiber in turbulent shear flow of fiber suspension
1
作者 高振宇 林建忠 李俊 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第3期289-296,共8页
The rotational dispersion coefficient of the fiber in the turbulent shear flow of fiber suspension was studied theoretically. The function of correlation moment between the different fluctuating velocity gradients of ... The rotational dispersion coefficient of the fiber in the turbulent shear flow of fiber suspension was studied theoretically. The function of correlation moment between the different fluctuating velocity gradients of the flow was built firstly. Then the expres- sion, dependent on the characteristic length, time, velocity and a dimensionless parameter related to the effect of wall, of rotational dispersion coefficient is derived. The derived expression of rotational dispersion coefficient can be employed to the inhomogeneous and non-isotropic turbulent flows. Furthermore it can be expanded to three-dimensional turbulent flows and serves the theoretical basis for solving the turbulent flow of fiber suspension. 展开更多
关键词 fiber suspension turbulent shear flow rotational dispersion coefficient EXPRESSION
下载PDF
Bogie's Rotational Resistance Coefficient Analysis Based on Novel Parallel Mechanism
2
作者 苏建 王启明 +2 位作者 吕志超 林慧英 张益瑞 《Journal of Donghua University(English Edition)》 EI CAS 2017年第5期702-709,共8页
In this paper,a novel parallel mechanism which can be used to evaluate body-to-bogie yawtorque is proposed.It can satisfy experimental testing for rotation resistance coefficient(RRC) with various types of bogies,diff... In this paper,a novel parallel mechanism which can be used to evaluate body-to-bogie yawtorque is proposed.It can satisfy experimental testing for rotation resistance coefficient(RRC) with various types of bogies,different rotational speeds,and different states of air spring.Aiming at the problem that computing speed of Newton iterative method for solving rotational angle is incompetence to meet the real-time requirements,and also that other methods adopting physical device such as laser displacement sensor to solve rotational angle possess larger measurement error,the analytical techniques method used for solving rotational angle is presented.Finally,by using the upper-single-6-DOF motion platform as an authentic urging mean to simulate a real vehicle,the test was carried out under the speeds of 0.2 and 1.0(°)/s,with the air spring at the inflated and deflated states,respectively.The results showthat the RRC of the bogie under various conditions is less than 0.06,which meets the standard requirement EN-14363.It was also found that the speed of vehicles moving along curves and the state of air spring were key factors influencing the RRC.The feasibilities of this model and test method are verified in this study. 展开更多
关键词 railway vehicle rotation resistance coefficient(RRC) subway bogie forward kinematics air spring
下载PDF
Steady rotation of a composite sphere in a concentric spherical cavity 被引量:1
3
作者 D.Srinivasacharya M.Krishna Prasad 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期653-658,共6页
The problem of steady rotation of a composite sphere located at the centre of a spherical container has been investigated. A composite particle referred to in this paper is a spherical solid core covered with a permea... The problem of steady rotation of a composite sphere located at the centre of a spherical container has been investigated. A composite particle referred to in this paper is a spherical solid core covered with a permeable spherical shell. The Brinkman's model for the flow inside the compos- ite sphere and the Stokes equation for the flow in the spheri- cal container were used to study the motion. The torque ex- perienced by the porous spherical particle in the presence of cavity is obtained. The wall correction factor is calculated. In the limiting cases, the analytical solution describing the torque for a porous sphere and for a solid sphere in an un- bounded medium are obtained from the present analysis. 展开更多
关键词 rotation Porous sphere Solid core Stokesflow Brinkman equation Stress jump coefficient. Torque Wall correction factor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部