期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
On rotational normal modes of the Earth:Resonance,excitation,convolution, deconvolution and all that
1
作者 Benjamin Fong Chao 《Geodesy and Geodynamics》 2017年第6期371-376,共6页
Earth's Coriolis force profoundly alters the eigen frequencies, eigen functions, and excitation of rotational normal modes. Some rotational modes of the solid mantle-fluid outer core-solid inner core Earth system are... Earth's Coriolis force profoundly alters the eigen frequencies, eigen functions, and excitation of rotational normal modes. Some rotational modes of the solid mantle-fluid outer core-solid inner core Earth system are confirmed observationally and some remain elusive. Here we bring together from literature assertions about an excited resonance system in terms of the Green's function and temporal convolution. We raise caveats against taking the face values of the oscillational motion which have been "masqueraded" by the convolution, necessitating deconvolution for retrieving the excitation function which reflects the true variability. Lastly we exemplify successful applications of the deconvolution in estimating resonance complex frequencies. 展开更多
关键词 rotational modes Resonance Excitation Convolution Deconvolution
下载PDF
An Ultra‑Durable Windmill‑Like Hybrid Nanogenerator for Steady and Efficient Harvesting of Low‑Speed Wind Energy 被引量:7
2
作者 Ying Zhang Qixuan Zeng +5 位作者 Yan Wu Jun Wu Songlei Yuan Dujuan Tan Chenguo Hu Xue Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期228-238,共11页
Wind energy is one of the most promising and renewable energy sources;however,owing to the limitations of device structures,collecting low-speed wind energy by triboelectric nanogenerators(TENGs)is still a huge challe... Wind energy is one of the most promising and renewable energy sources;however,owing to the limitations of device structures,collecting low-speed wind energy by triboelectric nanogenerators(TENGs)is still a huge challenge.To solve this problem,an ultra-durable and highly efficient windmill-like hybrid nanogenerator(W-HNG)is developed.Herein,the W-HNG composes coupled TENG and electromagnetic generator(EMG)and adopts a rotational contact-separation mode.This unique design efficiently avoids the wear of friction materials and ensures a prolonged service life.Moreover,the generator group is separated from the wind-driven part,which successfully prevents rotation resistance induced by the friction between rotor and stator in the conventional structures,and realizes low-speed wind energy harvesting.Additionally,the output characteristics of TENG can be complementary to the different performance advantages of EMG to achieve a satisfactory power production.The device is successfully driven when the wind speed is 1.8 m s−1,and the output power of TENG and EMG can achieve 0.95 and 3.7 mW,respectively.After power management,the W-HNG has been successfully applied as a power source for electronic devices.This work provides a simple,reliable,and durable device for improved performance toward large-scale low-speed breeze energy harvesting. 展开更多
关键词 Triboelectric nanogenerator Windmill-like structure rotational contact-separation mode Low-speed wind energy harvesting
下载PDF
Dynamic behavior of a rotating gliding arc plasma in nitrogen:effects of gas flow rate and operating current 被引量:1
3
作者 张浩 朱凤森 +1 位作者 李晓东 杜长明 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第4期42-47,共6页
The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigate... The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigated.The operating current has been shown to significantly affect the time-resolved voltage waveforms of the discharge,particularly at flow rate =21 min^-1.When the current was lower than 140 mA,sinusoidal waveforms with regular variation periods of 13.5-17.0 ms can be observed (flow rate =21 min^-1).The restrike mode characterized by serial sudden drops of voltage appeared under all studied conditions.Increasing the flow rate from 8 to 121 min^-1 (at the same current) led to a shift of arc rotation mode which would then result in a significant drop of discharge voltage (around 120-200 V).For a given flow rate,the reduction of current resulted in a nearly linear increase of voltage. 展开更多
关键词 rotating gliding arc (RGA) electrical characteristics gas flow rate operating current rotation mode
下载PDF
An Optimized Damage Identification Method of Beam Using Wavelet and Neural Network
4
作者 Bingrong Miao Mingyue Wang +2 位作者 Shuwang Yang Yaoxiang Luo Caijin Yang 《Engineering(科研)》 2020年第10期748-765,共18页
An optimized damage identification method of beam combined wavelet with neural network is presented in an attempt to improve the calculation iterative speed and accuracy damage identification. The mathematical model i... An optimized damage identification method of beam combined wavelet with neural network is presented in an attempt to improve the calculation iterative speed and accuracy damage identification. The mathematical model is developed to identify the structure damage based on the theory of finite elements and rotation modal parameters. The model is integrated with BP neural network optimization approach which utilizes the Genetic algorithm optimization method. The structural rotation modal parameters are performed with the continuous wavelet transform through the Mexico hat wavelet. The location of structure damage is identified by the maximum of wavelet coefficients. Then, the multi-scale wavelet coefficients modulus maxima are used as the inputs of the BP neural network, and through training and updating the optimal weight and threshold value to obtain the ideal output which is used to describe the degree of structural damage. The obtained results demonstrate the effectiveness of the proposed approach in simultaneously improving the structural damage identification precision including the damage locating and severity. 展开更多
关键词 Damage Identification rotation Mode Wavelet Singularity Theory BP Neural Network Genetic Algorithm
下载PDF
First-order phase transition and unexpected rigid rotation mode in hybrid improper ferroelectric(La,Al)co-substituted Ca_(3)Ti_(2)O_(7) ceramics 被引量:5
5
作者 Z.Z.Hu J.J.Lu +4 位作者 B.H.Chen T.T.Gao X.Q.Liu W.Wen X.M.Chen 《Journal of Materiomics》 SCIE EI 2019年第4期618-625,共8页
Ca_(3)Ti_(2)O_(7) with Ruddlesden-Popper structure exhibits the largest polarization among the known hybrid improper ferroelectrics.However,the high Curie temperature impedes the thorough study of phase transition thr... Ca_(3)Ti_(2)O_(7) with Ruddlesden-Popper structure exhibits the largest polarization among the known hybrid improper ferroelectrics.However,the high Curie temperature impedes the thorough study of phase transition through dielectric characterization.According to the previous theoretical design rule,the Curie temperature can be suppressed by increasing the tolerance factor.So,in the present work,high-quality Ca_(3-x)LaxTi_(2-x)Al_(x)O_(7)(x=0.0,0.1,0.2,0.3)ceramics with increased tolerance factors were successfully prepared.The amplitude of oxygen octahedral tilt mode indeed decreases with increasing tolerance factors,leading to a degeneration of ferroelectric polarization.However,the unexpected rigid rotation mode causes the composition-invariable coercive fields.The Curie temperatures decrease linearly with increasing x and tolerance factors.The variable-temperature dielectric constant confirms first-order improper ferroelectric transitions in Ca_(3)Ti_(2)O_(7)-based ceramics.The results of variable temperature Xray diffraction reveal the coexistence of two-phases below Curie temperature.The present work confidently confirms the first-order improper ferroelectric transition in Ca_(3)Ti_(2)O_(7)-based ceramics by combining results of variable-temperature dielectric response and in-situ X-ray powder diffraction. 展开更多
关键词 Hybrid improper ferroelectricity Ca_(3)Ti_(2)O_(7) Rigid rotation mode First-order phase transition Dielectric response
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部