We propose a terahertz(THz)vortex emitter that utilizes a high-resistance silicon resonator to generate vortex beams with various topological charges.Addressing the challenge of double circular polarization superposit...We propose a terahertz(THz)vortex emitter that utilizes a high-resistance silicon resonator to generate vortex beams with various topological charges.Addressing the challenge of double circular polarization superposition resulting from the high refractive index contrast,we regulate the transverse spin state through a newly designed second-order grating partially etched on the waveguide’s top side.The reflected wave can be received directly by a linearly polarized antenna,simplifying the process.Benefiting from the tuning feature,a joint detection method involving positive and negative topological charges identifies and detects rotational Doppler effects amid robust micro-Doppler interference signals.This emitter can be used for the rotational velocity measurement of an on-axis spinning object,achieving an impressive maximum speed error rate of∼2%.This approach holds promise for the future development of THz vortex beam applications in radar target detection and countermeasure systems,given its low cost and potential for mass production.展开更多
基金supported in part by the National Natural Science Foundation of China(62275155,61988102,62271320).
文摘We propose a terahertz(THz)vortex emitter that utilizes a high-resistance silicon resonator to generate vortex beams with various topological charges.Addressing the challenge of double circular polarization superposition resulting from the high refractive index contrast,we regulate the transverse spin state through a newly designed second-order grating partially etched on the waveguide’s top side.The reflected wave can be received directly by a linearly polarized antenna,simplifying the process.Benefiting from the tuning feature,a joint detection method involving positive and negative topological charges identifies and detects rotational Doppler effects amid robust micro-Doppler interference signals.This emitter can be used for the rotational velocity measurement of an on-axis spinning object,achieving an impressive maximum speed error rate of∼2%.This approach holds promise for the future development of THz vortex beam applications in radar target detection and countermeasure systems,given its low cost and potential for mass production.