The rotating axisymmetric cavitator is widely applied in underwater vehicles, and its rotational motion affects the cavita- ting flow over the cavitator. This study focuses on the effect of rotation on the flow struct...The rotating axisymmetric cavitator is widely applied in underwater vehicles, and its rotational motion affects the cavita- ting flow over the cavitator. This study focuses on the effect of rotation on the flow structure in the cavity bubble. Unsteady 2-D/3-D numerical simulations of cavitating flows over axisymmetric cavitators are performed using the volume of fraction (VOF) method and the Sauer-Schnerr cavitation model. Firstly, the 2-D simulation of cavitating flow over a circular disk or a cone cavitator is carried out at various cavitation numbers (0.15, 0.175, 0.2, 0.225 and 0.25). The simulated cavity lengths and drag coefficients are compared with the experimental data, the theoretical estimations and the published numerical results. Then the 3-D simulations of cavitating flows over the same axisymmetric cavitators with different rotating speeds are performed using the sliding mesh model (SMM). The effect of rotation on the cavity shape and the internal flow structure is analyzed.展开更多
基金Project Supported by the Sepcial Research Program of Public Welfare and Capacity Building in Guangdong Province(Grant No.2015A020216008)
文摘The rotating axisymmetric cavitator is widely applied in underwater vehicles, and its rotational motion affects the cavita- ting flow over the cavitator. This study focuses on the effect of rotation on the flow structure in the cavity bubble. Unsteady 2-D/3-D numerical simulations of cavitating flows over axisymmetric cavitators are performed using the volume of fraction (VOF) method and the Sauer-Schnerr cavitation model. Firstly, the 2-D simulation of cavitating flow over a circular disk or a cone cavitator is carried out at various cavitation numbers (0.15, 0.175, 0.2, 0.225 and 0.25). The simulated cavity lengths and drag coefficients are compared with the experimental data, the theoretical estimations and the published numerical results. Then the 3-D simulations of cavitating flows over the same axisymmetric cavitators with different rotating speeds are performed using the sliding mesh model (SMM). The effect of rotation on the cavity shape and the internal flow structure is analyzed.