The structural evolution fromβ_(1)(Mg_(3)Ce)toβ(Mg_(12)Ce)precipitates,which takes place at the over-aged stage of binary Mg-Ce alloys,are investigated by high-angle annular dark-field scanning transmission electron...The structural evolution fromβ_(1)(Mg_(3)Ce)toβ(Mg_(12)Ce)precipitates,which takes place at the over-aged stage of binary Mg-Ce alloys,are investigated by high-angle annular dark-field scanning transmission electron microscopy.The structural transformation mainly occurs in the{111}_(β1)crystallographic planes,where the newly formedβlattices exhibit two categories of domain structures,namely rotational and translational domains.The rotational domain is composed of threeβdomains(β_(RA),β_(RB)andβ_(RC)),which are related by a 120°rotation with respect to each other around the 111_(β1)axis of theirβ_(1)parent phase.The{111}_(β1)crystallographic planes can provide four sets of sublattices with the same orientation for an initial nucleation ofβlattice.It leads to the formation of four translationalβdomains(β_(TA),β_(TB),β_(TC)andβ_(TD)),among which any two differ by a vector of 1/6112_(β1).We deduce theoretically that there exist twenty-fourβdomains during this transition.However,considering the interfacial misfit,only one-third of domains can grow up and eventually formsβribbon.Furthermore,a majority ofβribbons overlap partiallyβ_(1)plate,which is beneficial to relax interfacial strain amongβ,β_(1)andα-Mg matrix(α/β/β_(1)).The configuration of multipleβdomains can effectively regulate interfacial misfit ofα/βandβ/β_(1),which are responsible for enhancing the hardness and strength of Mg-Ce alloy.Additionally,this study aims to provide some clues to improve the over-aged performance of magnesium alloys by constructingβdomains and optimizing theα/β/β_(1)interface.展开更多
In a dynamic CT, the acquired projections are corrupted due to strong dynamic nature of the object, for example: lungs, heart etc. In this paper, we present fan-beam reconstruction algorithm without position-dependent...In a dynamic CT, the acquired projections are corrupted due to strong dynamic nature of the object, for example: lungs, heart etc. In this paper, we present fan-beam reconstruction algorithm without position-dependent backprojection weight which compensates for the time-dependent translational, uniform scaling and rotational deformations occurring in the object of interest during the data acquisition process. We shall also compare the computational cost of the proposed reconstruction algorithm with the existing one which has position-dependent weight. To accomplish the objective listed above, we first formulate admissibility conditions on deformations that is required to exactly reconstruct the object from acquired sequential deformed projections and then derive the reconstruction algorithm to compensate the above listed deformations satisfying the admissibility conditions. For this, 2-D time-dependent deformation model is incorporated in the fan-beam FBP reconstruction algorithm with no backprojection weight, assuming the motion parameters being known. Finally the proposed reconstruction algorithm is evaluated with the motion corrupted projection data simulated on the computer.展开更多
Communication between people with disabilities and people who do not understand sign language is a growing social need and can be a tedious task.One of the main functions of sign language is to communicate with each o...Communication between people with disabilities and people who do not understand sign language is a growing social need and can be a tedious task.One of the main functions of sign language is to communicate with each other through hand gestures.Recognition of hand gestures has become an important challenge for the recognition of sign language.There are many existing models that can produce a good accuracy,but if the model test with rotated or translated images,they may face some difficulties to make good performance accuracy.To resolve these challenges of hand gesture recognition,we proposed a Rotation,Translation and Scale-invariant sign word recognition system using a convolu-tional neural network(CNN).We have followed three steps in our work:rotated,translated and scaled(RTS)version dataset generation,gesture segmentation,and sign word classification.Firstly,we have enlarged a benchmark dataset of 20 sign words by making different amounts of Rotation,Translation and Scale of the ori-ginal images to create the RTS version dataset.Then we have applied the gesture segmentation technique.The segmentation consists of three levels,i)Otsu Thresholding with YCbCr,ii)Morphological analysis:dilation through opening morphology and iii)Watershed algorithm.Finally,our designed CNN model has been trained to classify the hand gesture as well as the sign word.Our model has been evaluated using the twenty sign word dataset,five sign word dataset and the RTS version of these datasets.We achieved 99.30%accuracy from the twenty sign word dataset evaluation,99.10%accuracy from the RTS version of the twenty sign word evolution,100%accuracy from thefive sign word dataset evaluation,and 98.00%accuracy from the RTS versionfive sign word dataset evolution.Furthermore,the influence of our model exists in competitive results with state-of-the-art methods in sign word recognition.展开更多
This paper presents model problem studies for micropolar thermoviscoelastic solids without memory and micropolar thermoviscous fluid using micropolar non-classical continuum theories (NCCT) based on internal rotations...This paper presents model problem studies for micropolar thermoviscoelastic solids without memory and micropolar thermoviscous fluid using micropolar non-classical continuum theories (NCCT) based on internal rotations and rotation rates in which rotational inertial physics is considered in the derivation of the conservation and balance laws (CBL). The dissipation mechanism is due to strain rates as well as rotation rates. Model problems are designed to demonstrate and illustrate various significant aspects of the micropolar NCCT with rotational inertial physics considered in this paper. In case of micropolar solids, the translational and rotational waves are shown to coexist. In the absence of microconstituents (classical continuum theory, CCT) the internal rotations are a free field, hence have no influence on CCT. Absence of gradients of displacements and strains in micropolar thermoviscous fluid medium prohibits existence of translational waves as well as rotational waves even though the appearance of the mathematical model is analogous to the solids, but in terms of strain rates. It is shown that in case of micropolar thermoviscous fluids the BAM behaves more like time dependent diffusion equation i.e., like heat conduction equation in Lagrangian description. The influence of rotational inertial physics is demonstrated using BLM as well as BAM in the model problem studies.展开更多
Imbalance vibration is a typical failure mode of rotational machines and has significant negative effects on the efficiency,accuracy,and service life of equipment.To automatically reduce the imbalance vibration during...Imbalance vibration is a typical failure mode of rotational machines and has significant negative effects on the efficiency,accuracy,and service life of equipment.To automatically reduce the imbalance vibration during the operational process,different types of active balancing actuators have been designed and widely applied in actual production.However,the existing electromagnetic-ring active balancing actuator is designed based on an axial excitation structure which can cause structural instability and has low electromagnetic driving efficiency.In this paper,a novel radial excitation structure and the working principle of an electromagnetic-ring active balancing actuator with a combined driving strategy are presented in detail.Then,based on a finite element model,the performance parameters of the actuator are analyzed,and reasonable design parameters are obtained.Self-locking torque measurements and comparative static and dynamic experiments are performed to validate the self-locking torque and driving efficiency of the actuator.The results indicate that this novel active balancing actuator has sufficient self-locking torque,achieves normal step rotation at 2000 r/min,and reduces the driving voltage by 12.5%.The proposed novel balancing actuator using radial excitation and a combination of permanent magnets and soft-iron blocks has improved electromagnetic efficiency and a more stable and compact structure.展开更多
A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water press...A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water pressure. The calculations were based on limit analysis method of upper bound theory, with the employment of non-associated Mohr-Coulomb flow rule. Nonlinear failure criterion was adopted. Optimized analysis was conducted for the effects of the tunnel depth, pore water pressure coefficient, the initial cohesive force and nonlinear coefficient on supporting force. The upper bound solutions are obtained by optimum method. Results are listed and compared with the previously published solutions for the verification of correctness and effectiveness. The failure shapes are presented, and results are discussed for different pore water pressure coefficients and nonlinear coefficients of tunnel face.展开更多
Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrati...Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrations is designed. The actuator employs electro-hydraulic system and can provide a high and circumferential load. To initialize new research, the characteristics of various kinds of active actuators to control rotor shaft vibration are briefly introduced. The purpose of this paper is to introduce the preliminary results via presenting the structure, functions and operating principles, in particular, the working process of the electro-hydraulic system of the new actuator which includes a set of high speed electromagnetic valves and a series of sloping cone-shaped openings, and presenting the transmission relationships among the control parameters from control signals into the valves to active load onto shaft. The course of the work is dynamic, and a series of spatial forces and moments are put on the shaft to get an external resultant force to reduce excitations that induce vibration of shafts. By checking states of vibration, the actuator can control the impulse width and the interval of injection time for applying different control force to a vibration shaft in two circumference directions through the regulating action of a set of combination directional control valves. The results from simulating analysis and experiment show evidence of that this design can satisfy the case of active process of decreasing of flexural and torsional vibrations.展开更多
On-orbit construction and maintenance technology will play a significant role in future space exploration.The dexterous multifunctional spacecraft equipped with multi-arm,for instance,Spider Fab Bot,has attracted a gr...On-orbit construction and maintenance technology will play a significant role in future space exploration.The dexterous multifunctional spacecraft equipped with multi-arm,for instance,Spider Fab Bot,has attracted a great deal of focus due to its versatility in completing these missions.In such engineering practice,point-to-point moving in a complex environment is the fundamental issue.This paper investigates the three-dimensional point-to-point path planning problem,and a hierarchical path planning architecture is developed to give the trajectory of the multi-arm spacecraft effectively and efficiently.In the proposed 3-level architecture,the high-level planner generates the global constrained centric trajectory of the spacecraft with a rigid envelop assumption;the middle-level planner contributes the action sequence,a combination of the newly developed general translational and rotational locomotion mode,to cope with the relative position and attitude of the arms about the centroid of the spacecraft;the low-level planner maps the position/attitude of the end-effector of each arm from the operational space to the joint space optimally.Finally,the simulation experiment is carried out,and the results verify the effectiveness of the proposed three-layer architecture path planning strategy.展开更多
A simplified quasi-static computational model for self-sensing applications of magnetostrictive actuators based on terfenol-D rods is presented. Paths and angle changes in the magnetic moments rotation of Tb0.3Dy0.7Fe...A simplified quasi-static computational model for self-sensing applications of magnetostrictive actuators based on terfenol-D rods is presented. Paths and angle changes in the magnetic moments rotation of Tb0.3Dy0.7Fe2 alloy are studied as functions of compressive stress and magnetic field, and then used to determine the magnetization in its actuation. Then sensing of magnetic induction picked from a driving coil in an actuator is derived. The model is quick and efficient to solve moments rotation and its magnetization. Sensing results of compressive stress and magnetostriction calculated by the model are in good agreement with experiments and will be helpful in the design and control of self-sensing applications in actuators.展开更多
When a solid cone with smooth surfaces rotates at a constant rate about its long axis in still water, it will experience no friction, as announced earlier [1] and documented further here. However, if not restrained, i...When a solid cone with smooth surfaces rotates at a constant rate about its long axis in still water, it will experience no friction, as announced earlier [1] and documented further here. However, if not restrained, it will translate along the axis base first and apex last, which is caused by a variation of pressure on its side: low near the base and high at the apex. This translation needs to be verified experimentally. Friction will occur during translation but an opposite reaction force will also take place related to the front to back asymmetry of the body [2]. Whether or not these two oppositely directed forces can cancel each other out by an appropriate choice of variable magnitudes is not known, but if true, it would lead to an extended translation. Also the translation path could be lengthened by slightly modifying the front face of the cone such that the translation itself produces rotation. One idea for such a modification is suggested. Observations in the future would be very beneficial.展开更多
A first attempt has been made to confirm experimentally a theoretical concept, recently published, involving a rigid cone rotating about its long axis under still water: it should tend to translate along that axis blu...A first attempt has been made to confirm experimentally a theoretical concept, recently published, involving a rigid cone rotating about its long axis under still water: it should tend to translate along that axis blunt end leading and apex trailing. Two identical hollow cones, neutrally buoyant, with equal weights attached to the apexes, were released simultaneously at the surface of a swimming pool. One cone had a thin light weight spiral vane vertically attached to the cone’s outside surface in order to cause it to rotate as it sank. Several trial runs were made in the shallow and deep ends of the pool, and in every case, the non-rotating cone without a vane hit the bottom of the pool first. These comparisons qualitatively and indirectly validate the prediction.展开更多
This paper reports the large eddy simulations of the effects of a saw-tooth plasma actuator and the laidback fan-shaped hole on the film cooling flow characteristics, and the numerical results are compared with a corr...This paper reports the large eddy simulations of the effects of a saw-tooth plasma actuator and the laidback fan-shaped hole on the film cooling flow characteristics, and the numerical results are compared with a corresponding standard configuration(cylindrical hole without the sawtooth plasma actuator). For this numerical research, the saw-tooth plasma actuator is installed just downstream of the cooling hole and a phenomenological plasma model is employed to provide the 3D plasma force vectors. The results show that thanks to the downward force and the momentum injection effect of the saw-tooth plasma actuator, the cold jet comes closer to the wall surface and extends further downstream. The saw-tooth plasma actuator also induces a new pair of vortex which weakens the strength of the counter-rotating vortex pair(CRVP) and entrains the coolant towards the wall, and thus the diffusion of the cold jet in the crossflow is suppressed.Furthermore, the laidback fan-shaped hole reduces the vertical jet velocity causing the disappearance of downstream spiral separation node vortices, this compensates for the deficiency of the saw-tooth plasma actuator. Both effects of the laidback fan-shaped hole and the saw-tooth plasma actuator effectively control the development of the CRVP whose size and strength are smaller than those of the anti-counter rotating vortex pair in the far field, thus the centerline and the spanwise-averaged film cooling efficiency are enhanced. The average film cooling efficiency is the biggest in the Fan-Dc=1 case, which is 80% bigger than that in the Fan-Dc=0 case and 288% bigger than that in the Cyl-Dc=0 case.展开更多
Within the field of physics, the idea of perpetual motion is not allowed in most references. However, in a still fluid, one potential perpetual motion example is offered: a hollow solid cone rotating about its long ax...Within the field of physics, the idea of perpetual motion is not allowed in most references. However, in a still fluid, one potential perpetual motion example is offered: a hollow solid cone rotating about its long axis at a constant rate.展开更多
In the present paper, the establishment of a systematic multi-barycenter mechanics is based on the multi-particle mechanics. The new theory perfects the basic theoretical system of classical mechanics, which finds the...In the present paper, the establishment of a systematic multi-barycenter mechanics is based on the multi-particle mechanics. The new theory perfects the basic theoretical system of classical mechanics, which finds the law of mutual interaction between particle groups, reveals the limitations of Newton’s third law, discovers the principle of the intrinsic relationship between gravity and tidal force, reasonably interprets the origin and change laws for the rotation angular momentum of galaxies and stars and so on. By applying new theory, the multi-body problem can be transformed into a special two-body problem and for which an approximate solution method is proposed, the motion law of each particle can be roughly obtained.展开更多
文摘The structural evolution fromβ_(1)(Mg_(3)Ce)toβ(Mg_(12)Ce)precipitates,which takes place at the over-aged stage of binary Mg-Ce alloys,are investigated by high-angle annular dark-field scanning transmission electron microscopy.The structural transformation mainly occurs in the{111}_(β1)crystallographic planes,where the newly formedβlattices exhibit two categories of domain structures,namely rotational and translational domains.The rotational domain is composed of threeβdomains(β_(RA),β_(RB)andβ_(RC)),which are related by a 120°rotation with respect to each other around the 111_(β1)axis of theirβ_(1)parent phase.The{111}_(β1)crystallographic planes can provide four sets of sublattices with the same orientation for an initial nucleation ofβlattice.It leads to the formation of four translationalβdomains(β_(TA),β_(TB),β_(TC)andβ_(TD)),among which any two differ by a vector of 1/6112_(β1).We deduce theoretically that there exist twenty-fourβdomains during this transition.However,considering the interfacial misfit,only one-third of domains can grow up and eventually formsβribbon.Furthermore,a majority ofβribbons overlap partiallyβ_(1)plate,which is beneficial to relax interfacial strain amongβ,β_(1)andα-Mg matrix(α/β/β_(1)).The configuration of multipleβdomains can effectively regulate interfacial misfit ofα/βandβ/β_(1),which are responsible for enhancing the hardness and strength of Mg-Ce alloy.Additionally,this study aims to provide some clues to improve the over-aged performance of magnesium alloys by constructingβdomains and optimizing theα/β/β_(1)interface.
文摘In a dynamic CT, the acquired projections are corrupted due to strong dynamic nature of the object, for example: lungs, heart etc. In this paper, we present fan-beam reconstruction algorithm without position-dependent backprojection weight which compensates for the time-dependent translational, uniform scaling and rotational deformations occurring in the object of interest during the data acquisition process. We shall also compare the computational cost of the proposed reconstruction algorithm with the existing one which has position-dependent weight. To accomplish the objective listed above, we first formulate admissibility conditions on deformations that is required to exactly reconstruct the object from acquired sequential deformed projections and then derive the reconstruction algorithm to compensate the above listed deformations satisfying the admissibility conditions. For this, 2-D time-dependent deformation model is incorporated in the fan-beam FBP reconstruction algorithm with no backprojection weight, assuming the motion parameters being known. Finally the proposed reconstruction algorithm is evaluated with the motion corrupted projection data simulated on the computer.
基金This work was supported by the Competitive Research Fund of The University of Aizu,Japan.
文摘Communication between people with disabilities and people who do not understand sign language is a growing social need and can be a tedious task.One of the main functions of sign language is to communicate with each other through hand gestures.Recognition of hand gestures has become an important challenge for the recognition of sign language.There are many existing models that can produce a good accuracy,but if the model test with rotated or translated images,they may face some difficulties to make good performance accuracy.To resolve these challenges of hand gesture recognition,we proposed a Rotation,Translation and Scale-invariant sign word recognition system using a convolu-tional neural network(CNN).We have followed three steps in our work:rotated,translated and scaled(RTS)version dataset generation,gesture segmentation,and sign word classification.Firstly,we have enlarged a benchmark dataset of 20 sign words by making different amounts of Rotation,Translation and Scale of the ori-ginal images to create the RTS version dataset.Then we have applied the gesture segmentation technique.The segmentation consists of three levels,i)Otsu Thresholding with YCbCr,ii)Morphological analysis:dilation through opening morphology and iii)Watershed algorithm.Finally,our designed CNN model has been trained to classify the hand gesture as well as the sign word.Our model has been evaluated using the twenty sign word dataset,five sign word dataset and the RTS version of these datasets.We achieved 99.30%accuracy from the twenty sign word dataset evaluation,99.10%accuracy from the RTS version of the twenty sign word evolution,100%accuracy from thefive sign word dataset evaluation,and 98.00%accuracy from the RTS versionfive sign word dataset evolution.Furthermore,the influence of our model exists in competitive results with state-of-the-art methods in sign word recognition.
文摘This paper presents model problem studies for micropolar thermoviscoelastic solids without memory and micropolar thermoviscous fluid using micropolar non-classical continuum theories (NCCT) based on internal rotations and rotation rates in which rotational inertial physics is considered in the derivation of the conservation and balance laws (CBL). The dissipation mechanism is due to strain rates as well as rotation rates. Model problems are designed to demonstrate and illustrate various significant aspects of the micropolar NCCT with rotational inertial physics considered in this paper. In case of micropolar solids, the translational and rotational waves are shown to coexist. In the absence of microconstituents (classical continuum theory, CCT) the internal rotations are a free field, hence have no influence on CCT. Absence of gradients of displacements and strains in micropolar thermoviscous fluid medium prohibits existence of translational waves as well as rotational waves even though the appearance of the mathematical model is analogous to the solids, but in terms of strain rates. It is shown that in case of micropolar thermoviscous fluids the BAM behaves more like time dependent diffusion equation i.e., like heat conduction equation in Lagrangian description. The influence of rotational inertial physics is demonstrated using BLM as well as BAM in the model problem studies.
基金Supported by National Natural Scie nce Foun dation of China(Grant No.51875031)Youth Backb one Personal Project of Beijing(Grant No.2017000020124G018).
文摘Imbalance vibration is a typical failure mode of rotational machines and has significant negative effects on the efficiency,accuracy,and service life of equipment.To automatically reduce the imbalance vibration during the operational process,different types of active balancing actuators have been designed and widely applied in actual production.However,the existing electromagnetic-ring active balancing actuator is designed based on an axial excitation structure which can cause structural instability and has low electromagnetic driving efficiency.In this paper,a novel radial excitation structure and the working principle of an electromagnetic-ring active balancing actuator with a combined driving strategy are presented in detail.Then,based on a finite element model,the performance parameters of the actuator are analyzed,and reasonable design parameters are obtained.Self-locking torque measurements and comparative static and dynamic experiments are performed to validate the self-locking torque and driving efficiency of the actuator.The results indicate that this novel active balancing actuator has sufficient self-locking torque,achieves normal step rotation at 2000 r/min,and reduces the driving voltage by 12.5%.The proposed novel balancing actuator using radial excitation and a combination of permanent magnets and soft-iron blocks has improved electromagnetic efficiency and a more stable and compact structure.
基金Project(2013CB036004)supported by National Basic Research Program of ChinaProjects(51178468+2 种基金51378510)supported by the National Natural Science Foundation of ChinaProject(2015zzts061)supported by the Fundamental Research Funds for the Central UniversitiesChina
文摘A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water pressure. The calculations were based on limit analysis method of upper bound theory, with the employment of non-associated Mohr-Coulomb flow rule. Nonlinear failure criterion was adopted. Optimized analysis was conducted for the effects of the tunnel depth, pore water pressure coefficient, the initial cohesive force and nonlinear coefficient on supporting force. The upper bound solutions are obtained by optimum method. Results are listed and compared with the previously published solutions for the verification of correctness and effectiveness. The failure shapes are presented, and results are discussed for different pore water pressure coefficients and nonlinear coefficients of tunnel face.
基金supported by National Natural Science Foundation of China (No.50475112)National Hi-Tech Research and Development Program of China (863 Program,No.2006AA110112).
文摘Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrations is designed. The actuator employs electro-hydraulic system and can provide a high and circumferential load. To initialize new research, the characteristics of various kinds of active actuators to control rotor shaft vibration are briefly introduced. The purpose of this paper is to introduce the preliminary results via presenting the structure, functions and operating principles, in particular, the working process of the electro-hydraulic system of the new actuator which includes a set of high speed electromagnetic valves and a series of sloping cone-shaped openings, and presenting the transmission relationships among the control parameters from control signals into the valves to active load onto shaft. The course of the work is dynamic, and a series of spatial forces and moments are put on the shaft to get an external resultant force to reduce excitations that induce vibration of shafts. By checking states of vibration, the actuator can control the impulse width and the interval of injection time for applying different control force to a vibration shaft in two circumference directions through the regulating action of a set of combination directional control valves. The results from simulating analysis and experiment show evidence of that this design can satisfy the case of active process of decreasing of flexural and torsional vibrations.
基金supported by the National Natural Science Foundation of China(Grant Nos.62003115 and 11972130)the Shenzhen Natural Science Fund(the Stable Support Plan Program GXWD2020123015542700320200821170719001)。
文摘On-orbit construction and maintenance technology will play a significant role in future space exploration.The dexterous multifunctional spacecraft equipped with multi-arm,for instance,Spider Fab Bot,has attracted a great deal of focus due to its versatility in completing these missions.In such engineering practice,point-to-point moving in a complex environment is the fundamental issue.This paper investigates the three-dimensional point-to-point path planning problem,and a hierarchical path planning architecture is developed to give the trajectory of the multi-arm spacecraft effectively and efficiently.In the proposed 3-level architecture,the high-level planner generates the global constrained centric trajectory of the spacecraft with a rigid envelop assumption;the middle-level planner contributes the action sequence,a combination of the newly developed general translational and rotational locomotion mode,to cope with the relative position and attitude of the arms about the centroid of the spacecraft;the low-level planner maps the position/attitude of the end-effector of each arm from the operational space to the joint space optimally.Finally,the simulation experiment is carried out,and the results verify the effectiveness of the proposed three-layer architecture path planning strategy.
基金Project supported by the National Preeminent Youth Foundation(Grant No.51225702)the National Natural Science Foundation of China(Grant No.51177024)
文摘A simplified quasi-static computational model for self-sensing applications of magnetostrictive actuators based on terfenol-D rods is presented. Paths and angle changes in the magnetic moments rotation of Tb0.3Dy0.7Fe2 alloy are studied as functions of compressive stress and magnetic field, and then used to determine the magnetization in its actuation. Then sensing of magnetic induction picked from a driving coil in an actuator is derived. The model is quick and efficient to solve moments rotation and its magnetization. Sensing results of compressive stress and magnetostriction calculated by the model are in good agreement with experiments and will be helpful in the design and control of self-sensing applications in actuators.
文摘When a solid cone with smooth surfaces rotates at a constant rate about its long axis in still water, it will experience no friction, as announced earlier [1] and documented further here. However, if not restrained, it will translate along the axis base first and apex last, which is caused by a variation of pressure on its side: low near the base and high at the apex. This translation needs to be verified experimentally. Friction will occur during translation but an opposite reaction force will also take place related to the front to back asymmetry of the body [2]. Whether or not these two oppositely directed forces can cancel each other out by an appropriate choice of variable magnitudes is not known, but if true, it would lead to an extended translation. Also the translation path could be lengthened by slightly modifying the front face of the cone such that the translation itself produces rotation. One idea for such a modification is suggested. Observations in the future would be very beneficial.
文摘A first attempt has been made to confirm experimentally a theoretical concept, recently published, involving a rigid cone rotating about its long axis under still water: it should tend to translate along that axis blunt end leading and apex trailing. Two identical hollow cones, neutrally buoyant, with equal weights attached to the apexes, were released simultaneously at the surface of a swimming pool. One cone had a thin light weight spiral vane vertically attached to the cone’s outside surface in order to cause it to rotate as it sank. Several trial runs were made in the shallow and deep ends of the pool, and in every case, the non-rotating cone without a vane hit the bottom of the pool first. These comparisons qualitatively and indirectly validate the prediction.
基金supported by National Natural Science Foundation of China(Grant No.51306042)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.2013092)
文摘This paper reports the large eddy simulations of the effects of a saw-tooth plasma actuator and the laidback fan-shaped hole on the film cooling flow characteristics, and the numerical results are compared with a corresponding standard configuration(cylindrical hole without the sawtooth plasma actuator). For this numerical research, the saw-tooth plasma actuator is installed just downstream of the cooling hole and a phenomenological plasma model is employed to provide the 3D plasma force vectors. The results show that thanks to the downward force and the momentum injection effect of the saw-tooth plasma actuator, the cold jet comes closer to the wall surface and extends further downstream. The saw-tooth plasma actuator also induces a new pair of vortex which weakens the strength of the counter-rotating vortex pair(CRVP) and entrains the coolant towards the wall, and thus the diffusion of the cold jet in the crossflow is suppressed.Furthermore, the laidback fan-shaped hole reduces the vertical jet velocity causing the disappearance of downstream spiral separation node vortices, this compensates for the deficiency of the saw-tooth plasma actuator. Both effects of the laidback fan-shaped hole and the saw-tooth plasma actuator effectively control the development of the CRVP whose size and strength are smaller than those of the anti-counter rotating vortex pair in the far field, thus the centerline and the spanwise-averaged film cooling efficiency are enhanced. The average film cooling efficiency is the biggest in the Fan-Dc=1 case, which is 80% bigger than that in the Fan-Dc=0 case and 288% bigger than that in the Cyl-Dc=0 case.
文摘Within the field of physics, the idea of perpetual motion is not allowed in most references. However, in a still fluid, one potential perpetual motion example is offered: a hollow solid cone rotating about its long axis at a constant rate.
文摘In the present paper, the establishment of a systematic multi-barycenter mechanics is based on the multi-particle mechanics. The new theory perfects the basic theoretical system of classical mechanics, which finds the law of mutual interaction between particle groups, reveals the limitations of Newton’s third law, discovers the principle of the intrinsic relationship between gravity and tidal force, reasonably interprets the origin and change laws for the rotation angular momentum of galaxies and stars and so on. By applying new theory, the multi-body problem can be transformed into a special two-body problem and for which an approximate solution method is proposed, the motion law of each particle can be roughly obtained.