The repetitive control(RC) or repetitive controller problem for nonminimum phase nonlinear systems is both challenging and practical. In this paper, we consider an RC problem for the translational oscillator with a ro...The repetitive control(RC) or repetitive controller problem for nonminimum phase nonlinear systems is both challenging and practical. In this paper, we consider an RC problem for the translational oscillator with a rotational actuator(TORA), which is a nonminimum phase nonlinear system. The major difficulty is to handle both a nonminimum phase RC problem and a nonlinear problem simultaneously. For such purpose, a new RC design, namely the additive-state-decomposition-based approach, is proposed,by which the nonminimum phase RC problem and the nonlinear problem are separated. This makes RC for the TORA benchmark tractable. To demonstrate the effectiveness of the proposed approach, a numerical simulation is given.展开更多
基金supported by National Natural Science Foundation of China(No.61473012)
文摘The repetitive control(RC) or repetitive controller problem for nonminimum phase nonlinear systems is both challenging and practical. In this paper, we consider an RC problem for the translational oscillator with a rotational actuator(TORA), which is a nonminimum phase nonlinear system. The major difficulty is to handle both a nonminimum phase RC problem and a nonlinear problem simultaneously. For such purpose, a new RC design, namely the additive-state-decomposition-based approach, is proposed,by which the nonminimum phase RC problem and the nonlinear problem are separated. This makes RC for the TORA benchmark tractable. To demonstrate the effectiveness of the proposed approach, a numerical simulation is given.