1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successful...1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successfully created in China and was known afterwards as a turbine generator with watercooled stator and rotor windings (Abbrev, TGWSR). The teachers from Zhejiang University came to Shanghai between展开更多
Electrically controlled rotor (ECR) system has the potential to enhance the rotor perfor- mance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enha...Electrically controlled rotor (ECR) system has the potential to enhance the rotor perfor- mance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor performance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3% rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.展开更多
With the development of electric helicopters’ motor technology and the widespread use of electric drive rotors, more aircraft use electric rotors to provide thrust and directional control.For a helicopter tail rotor,...With the development of electric helicopters’ motor technology and the widespread use of electric drive rotors, more aircraft use electric rotors to provide thrust and directional control.For a helicopter tail rotor, the wake of the main rotor influences the tail rotor’s inflow and wake.In the procedure of controlling, crosswind will also cause changes to the tail disk load. This paper describes requirements and design principles of an electric motor drive and variable pitch tail rotor system. A particular spoke-type architecture of the motor is designed, and the performance of blades is analyzed by the CFD method. The demand for simplicity of moving parts and strict constraints on the weight of a helicopter makes the design of electrical and mechanical components challenging. Different solutions have been investigated to propose an effective alternative to the mechanical actuation system. A test platform is constructed which can collect the dynamic response of the thrust control. The enhancement of the response speed due to an individual motor speed control and variable-pitch system is validated.展开更多
文摘1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successfully created in China and was known afterwards as a turbine generator with watercooled stator and rotor windings (Abbrev, TGWSR). The teachers from Zhejiang University came to Shanghai between
基金supported by the National Natural Science Foundation of China (No. 51375229)
文摘Electrically controlled rotor (ECR) system has the potential to enhance the rotor perfor- mance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor performance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3% rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.
文摘With the development of electric helicopters’ motor technology and the widespread use of electric drive rotors, more aircraft use electric rotors to provide thrust and directional control.For a helicopter tail rotor, the wake of the main rotor influences the tail rotor’s inflow and wake.In the procedure of controlling, crosswind will also cause changes to the tail disk load. This paper describes requirements and design principles of an electric motor drive and variable pitch tail rotor system. A particular spoke-type architecture of the motor is designed, and the performance of blades is analyzed by the CFD method. The demand for simplicity of moving parts and strict constraints on the weight of a helicopter makes the design of electrical and mechanical components challenging. Different solutions have been investigated to propose an effective alternative to the mechanical actuation system. A test platform is constructed which can collect the dynamic response of the thrust control. The enhancement of the response speed due to an individual motor speed control and variable-pitch system is validated.