The dynamic behavior of a cracked flexible rotor supported on three kinds ofjournal bearings is presented. Numerical experiments show that nonsynchronous responseswill happen due to the rotor crack, and the amplitudes...The dynamic behavior of a cracked flexible rotor supported on three kinds ofjournal bearings is presented. Numerical experiments show that nonsynchronous responseswill happen due to the rotor crack, and the amplitudes of the nonsynchronous componentsbecome larger with the increase of crack. On the other hand, the fluid forces of journalbearings can suppress the nonsynchronous response. The (1/2) × or (3/2) × harmoniccomponent rarely appears for small crack near the rotating speed ratio Ω = 2Ωc or Ω =(2/3)Ωc. In the case of supercritical rotating speed, the additional 0× harmonic component is increased as the crack increases. The bearing parameters affect greatly the occur-rence of the nonsynchronous responses by means of exerting innuence on the critical spedand the stabi1ity of the system.展开更多
Nonlinear dynamic behaviors of a rotor dynamical system with finite hydrodynamic bearing supports were investigated. In order to increase the numerical accuracy and decrease computing costs, the isoparametric finite e...Nonlinear dynamic behaviors of a rotor dynamical system with finite hydrodynamic bearing supports were investigated. In order to increase the numerical accuracy and decrease computing costs, the isoparametric finite element method based on variational constraint approach is introduced because analytical bearing forces are not available. This method calculates the oil film forces and their Jacobians simultaneously while it can ensure that they have compatible accuracy. Nonlinear motion of the bearing-rotor system is caused by strong nonlinearity of oil film forces with respect to the displacements and velocities of the center of the rotor. A method consisting of a predictor-corrector mechanism and Newton-Raphson method is presented to calculate equilibrium position and critical speed corresponding to Hopf bifurcation point of the bearing-rotor system. Meanwhile the dynamic coefficients of bearing are obtained. The nonlinear unbalance periodic responses of the system are obtained by using Poincaré-Newton-Floquet method and a combination of predic- tor-corrector mechanism and Poincaré-Newton-Floquet method. The local stability and bifuration behaviors of periodic motions are analyzed by the Floquet theory. Chaotic motion of long term dynamic behaviors of the system is analyzed with power spectrum. The numerical results reveal such complex nonlinear behaviors as periodic, quasi-periodic, chaotic, jumped and coexistent solutions.展开更多
The influence of unbalance on low-frequency vibration exists whenthere are nonlinear factors in oil film force. Based on the Muszpeka oil film mod-el , a theoretical proof is presented. Some new results are obtained ...The influence of unbalance on low-frequency vibration exists whenthere are nonlinear factors in oil film force. Based on the Muszpeka oil film mod-el , a theoretical proof is presented. Some new results are obtained based on the im-proved simulation meth展开更多
文摘The dynamic behavior of a cracked flexible rotor supported on three kinds ofjournal bearings is presented. Numerical experiments show that nonsynchronous responseswill happen due to the rotor crack, and the amplitudes of the nonsynchronous componentsbecome larger with the increase of crack. On the other hand, the fluid forces of journalbearings can suppress the nonsynchronous response. The (1/2) × or (3/2) × harmoniccomponent rarely appears for small crack near the rotating speed ratio Ω = 2Ωc or Ω =(2/3)Ωc. In the case of supercritical rotating speed, the additional 0× harmonic component is increased as the crack increases. The bearing parameters affect greatly the occur-rence of the nonsynchronous responses by means of exerting innuence on the critical spedand the stabi1ity of the system.
基金Project supported by National Natural Science Foundation of China (Grant No. 50275116), and National High-Technology Research and Development Program of China ( Nos. 2002AA414060, 2002AA503020)
文摘Nonlinear dynamic behaviors of a rotor dynamical system with finite hydrodynamic bearing supports were investigated. In order to increase the numerical accuracy and decrease computing costs, the isoparametric finite element method based on variational constraint approach is introduced because analytical bearing forces are not available. This method calculates the oil film forces and their Jacobians simultaneously while it can ensure that they have compatible accuracy. Nonlinear motion of the bearing-rotor system is caused by strong nonlinearity of oil film forces with respect to the displacements and velocities of the center of the rotor. A method consisting of a predictor-corrector mechanism and Newton-Raphson method is presented to calculate equilibrium position and critical speed corresponding to Hopf bifurcation point of the bearing-rotor system. Meanwhile the dynamic coefficients of bearing are obtained. The nonlinear unbalance periodic responses of the system are obtained by using Poincaré-Newton-Floquet method and a combination of predic- tor-corrector mechanism and Poincaré-Newton-Floquet method. The local stability and bifuration behaviors of periodic motions are analyzed by the Floquet theory. Chaotic motion of long term dynamic behaviors of the system is analyzed with power spectrum. The numerical results reveal such complex nonlinear behaviors as periodic, quasi-periodic, chaotic, jumped and coexistent solutions.
文摘The influence of unbalance on low-frequency vibration exists whenthere are nonlinear factors in oil film force. Based on the Muszpeka oil film mod-el , a theoretical proof is presented. Some new results are obtained based on the im-proved simulation meth