This paper describes systematic measurement of fiber migration and distribution pattern of twist at different radial positions of rotor spun yarn mixed tracer fiber by Hi-Scope Video Microscope System. The positions o...This paper describes systematic measurement of fiber migration and distribution pattern of twist at different radial positions of rotor spun yarn mixed tracer fiber by Hi-Scope Video Microscope System. The positions of tracer fibers were measured in three dimensions accurately, and the migration index and the twist distribution at different radial positions of rotor yarn were calculated and analyzed. This research result serves to provide useful references for further study on the structural mechanics of rotor spun yarn.展开更多
This work proposes a new strategy to improve the rotor position estimation of a permanent magnet synchronous motor(PMSM) over wide speed range. Rotor position estimation of a PMSM is performed by using sliding mode ob...This work proposes a new strategy to improve the rotor position estimation of a permanent magnet synchronous motor(PMSM) over wide speed range. Rotor position estimation of a PMSM is performed by using sliding mode observer(SMO). An adaptive observer gain was designed based on Lyapunov function and applied to solve the chattering problem caused by the discontinuous function of the SMO in the wide speed range. The cascade low-pass filter(LPF) with variable cut-off frequency was proposed to reduce the chattering problem and to attenuate the filtering capability of the SMO. In addition, the phase shift caused by the filter was counterbalanced by applying the variable phase delay compensation for the whole speed area. High accuracy estimation result of the rotor position was obtained in the experiment by applying the proposed estimation strategy.展开更多
Bearing support position is one of main factors affecting vibration characteristics of rotor systems. To optimize the bearing support positions in a high-speed flexible rotor system (HSFRS) based on the vibration char...Bearing support position is one of main factors affecting vibration characteristics of rotor systems. To optimize the bearing support positions in a high-speed flexible rotor system (HSFRS) based on the vibration characteristics, an optimization method of bearing support positions in the HSFRS is proposed. In this method, a finite element (FE) model of a high-speed flexible rotor (HSFR) was established. The natural frequencies and mode shapes of the HSFRS were used to obtain the initial design scheme of the bearing support positions. A frequency characteristic equation of the HSFRS was established to obtain the critical speeds of the HSFRS. And a dynamic model of the HSFRS was established to analyze the vibration characteristics for different bearing support position cases. The problem of optimizing bearing support positions in the HSFRS was solved by the developed method. The results showed that vibration amplitudes of the HSFRS were more stable when the bearing support positions were optimized. This study can provide a new method for optimizing bearing support positions of rotor systems.展开更多
The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position obser...The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position observer using the space vector flux relations of BDFIG may achieve the desired voltage control of the power winding(PW)in terms of magnitude and frequency,without any speed/position sensors.The proposed algorithm does not require any additional observers for obtaining the generator speed.The proposed technique can directly achieve the desired DVC based on the estimated rotor position,which may reduce the overall system cost.The stability analysis of the proposed observer is investigated and confirmed with the concept of quadratic Lyapunov function and using the multi-model representation.In addition,the sensitivity analysis of the presented method is confirmed under different issues of parameter uncertainties.Comprehensive results from both simulation and experiments are realized with a prototype wound-rotor BDFIG,which demonstrate the capability and efficacy of the proposed sensorless DVC strategy with good transient behavior under different operating conditions.Furthermore,the analysis confirms the robustness of the proposed observer via the machine parameter changes.展开更多
文摘This paper describes systematic measurement of fiber migration and distribution pattern of twist at different radial positions of rotor spun yarn mixed tracer fiber by Hi-Scope Video Microscope System. The positions of tracer fibers were measured in three dimensions accurately, and the migration index and the twist distribution at different radial positions of rotor yarn were calculated and analyzed. This research result serves to provide useful references for further study on the structural mechanics of rotor spun yarn.
基金Project(2012(PS-2012-090))supported by the Pukyong National University Research Abroad Fund,Korea
文摘This work proposes a new strategy to improve the rotor position estimation of a permanent magnet synchronous motor(PMSM) over wide speed range. Rotor position estimation of a PMSM is performed by using sliding mode observer(SMO). An adaptive observer gain was designed based on Lyapunov function and applied to solve the chattering problem caused by the discontinuous function of the SMO in the wide speed range. The cascade low-pass filter(LPF) with variable cut-off frequency was proposed to reduce the chattering problem and to attenuate the filtering capability of the SMO. In addition, the phase shift caused by the filter was counterbalanced by applying the variable phase delay compensation for the whole speed area. High accuracy estimation result of the rotor position was obtained in the experiment by applying the proposed estimation strategy.
基金National Natural Science Foundation of China (No. 51975068)。
文摘Bearing support position is one of main factors affecting vibration characteristics of rotor systems. To optimize the bearing support positions in a high-speed flexible rotor system (HSFRS) based on the vibration characteristics, an optimization method of bearing support positions in the HSFRS is proposed. In this method, a finite element (FE) model of a high-speed flexible rotor (HSFR) was established. The natural frequencies and mode shapes of the HSFRS were used to obtain the initial design scheme of the bearing support positions. A frequency characteristic equation of the HSFRS was established to obtain the critical speeds of the HSFRS. And a dynamic model of the HSFRS was established to analyze the vibration characteristics for different bearing support position cases. The problem of optimizing bearing support positions in the HSFRS was solved by the developed method. The results showed that vibration amplitudes of the HSFRS were more stable when the bearing support positions were optimized. This study can provide a new method for optimizing bearing support positions of rotor systems.
基金This work was supported in part by the National Natural Science Foundation of China(NSFC)under Grants 51707079 and 51877093in part by the National Key Research and Development Program of China(Project ID:YS2018YFGH000200)in part by the Fundamental Research Funds for the Central Universities(Project ID:2019kfyXMBZ031).
文摘The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position observer using the space vector flux relations of BDFIG may achieve the desired voltage control of the power winding(PW)in terms of magnitude and frequency,without any speed/position sensors.The proposed algorithm does not require any additional observers for obtaining the generator speed.The proposed technique can directly achieve the desired DVC based on the estimated rotor position,which may reduce the overall system cost.The stability analysis of the proposed observer is investigated and confirmed with the concept of quadratic Lyapunov function and using the multi-model representation.In addition,the sensitivity analysis of the presented method is confirmed under different issues of parameter uncertainties.Comprehensive results from both simulation and experiments are realized with a prototype wound-rotor BDFIG,which demonstrate the capability and efficacy of the proposed sensorless DVC strategy with good transient behavior under different operating conditions.Furthermore,the analysis confirms the robustness of the proposed observer via the machine parameter changes.