Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic ...Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces.展开更多
Conventional squeeze film dampers have numerous challenges including lock up,bistable response and incoordinate precession.In order to resolve these nonlinear problems,a novel G-type integral squeeze film damper(GISFD...Conventional squeeze film dampers have numerous challenges including lock up,bistable response and incoordinate precession.In order to resolve these nonlinear problems,a novel G-type integral squeeze film damper(GISFD)is proposed in this research.The experimental test rig is provided to investigate the rotor system with an unbalanced single disk.Numerical simulation results show that the structural design of GISFD is reasonable,which can ensure its safe and stable operation.The influence of different support stiffnesses on the first-order speed of the rotor system is analyzed.Experimental results show that GISFD can effectively suppress the unbalanced response vibration of the rotor.In a certain range,it is found that the suppression effect of GISFD increases with the increase in the kinematic viscosity of the damping fluid.When the silicone oil with kinematic viscosity coefficients v=30.0 cm^(2)/s is employed,the vibration reduction of GISFD is approximately 71.51%.Furthermore,the experimental results show that with the increase of the unbalance,there is a linear relationship between the unbalance and the corresponding amplitude of the unbalanced response.It is concluded that GISFD has excellent linear damping characteristics and reduces the sensitivity of the rotor system to the unbalanced mass.展开更多
Many industrial applications and experiments have shown that sliding bearings often experience fluid film whip due to nonlinear fluid film forces which can cause rotor-stator rub-impact failures. The oil-film whips ha...Many industrial applications and experiments have shown that sliding bearings often experience fluid film whip due to nonlinear fluid film forces which can cause rotor-stator rub-impact failures. The oil-film whips have attracted many studies while the water-film whips in the water lubricated sliding bearing have been little researched with the mechanism still an open problem. The dynamic fluid film forces in a water sliding bearing are investigated numerically with rotational, whirling and squeezing motions of the journal using a nonlinear model to identify the relationships between the three motions. Rotor speed-up and slow-down experiments are then conducted with the rotor system supported by a water lubricated sliding bearing to induce the water-film whirl/whip and verify the relationship. The experimental results show that the vibrations of the journal alternated between increasing and decreasing rather than continuously increasing as the rotational speed increased to twice the first critical speed, which can be explained well by the nonlinear model. The radial growth rate of the whirl motion greatly affects the whirl frequency of the journal and is responsible for the frequency lock in the water-film whip. Further analysis shows that increasing the lubricating water flow rate changes the water-film whirl/whip characteristics, reduces the first critical speed, advances the time when significant water-film whirling motion occurs, and also increases the vibration amplitude at the bearing center which may lead to the rotor-stator rub-impact. The study gives the insight into the water-film whirl and whip in the water lubricated sliding bearing.展开更多
This paper aims at investigating the effectiveness of squeeze oil film in suppressing the longitudinal vibration of propulsion shaft systems through a novel integral axial squeeze film damper(IASFD).After designing th...This paper aims at investigating the effectiveness of squeeze oil film in suppressing the longitudinal vibration of propulsion shaft systems through a novel integral axial squeeze film damper(IASFD).After designing the IASFD,a propulsion shafting test rig for the longitudinal vibration control is built.Longitudinal vibration control experiments of the propulsion shafting are carried out under different magnitude and frequency of the excitation force.The results show that both IASFD elastic support and IASFD elastic damping support have excellent vibration attenuation characteristics,and can effectively suppress the longitudinal vibration of the shaft system in a wide frequency range.However,IASFD elastic damping support has a more significant vibration reduction effect than the other supports,and increasing the damping of the system has obvious effect on reducing the shafting vibration.For an excitation force of 45 N,the maximum reduction of the vibration amplitude is 89.16%.Also,the vibration generated by the resonance phenomenon is also significantly reduced.展开更多
In this paper, a dynamic model on a rigid rotor sliding bearing system with a SFD is established. The stability and bifurcation behaviors of the system are studied. On the basis of the differential equations of fluid...In this paper, a dynamic model on a rigid rotor sliding bearing system with a SFD is established. The stability and bifurcation behaviors of the system are studied. On the basis of the differential equations of fluid momentum and mass continuity, the distribution pressure function is derived by taking oil film inertia force into consideration. Damping force, clearance excitation force, interference force of different frequencies and static load are also considered in the model. Finally, the governing equations of the stability and bifurcation behaviors of the system are solved by Floquet theory. Simulation of dynamic model shows that the rigid rotor sliding bearing system can maintain stability and exhibit a Hopf bifurcation phenomenon in a certain range.展开更多
When the actual installation center distance between a pair of spur gears is greater than the theoretical center distance,backlash increases,leading to increased vibration and noise.The structural parameters of an int...When the actual installation center distance between a pair of spur gears is greater than the theoretical center distance,backlash increases,leading to increased vibration and noise.The structural parameters of an integral squeeze film damper(ISFD)were designed with the stiffness of rigid support as reference to investigate the effect of an ISFD on the dynamic characteristics of a spur gear transmission system with center-distance installation error.A spur gear test bench with center distance-error was built to investigate the vibration and noise reduction characteristics of ISFD.The experimental results indicate that,compared with a rigid support,the ISFD can reduce vibration by approximately 40%and noise by approximately 5 d B.ISFD can effectively absorb the impact energy caused by an increase of in backlash,which is conducive to the stable operation of the spur gear transmission system.展开更多
A dynamic model of a flexible rotor-sliding bearing system ( FRSBS ) with asqueeze film damper ( SFD) is established. Considered in the model are oil film inertia force,damping farce, clearance excitation force, inter...A dynamic model of a flexible rotor-sliding bearing system ( FRSBS ) with asqueeze film damper ( SFD) is established. Considered in the model are oil film inertia force,damping farce, clearance excitation force, interference force of different frequencies and staticload, as opposed to previous research. On the basis of this model, the optimal design of the systemis deeply studied. Simulation shows that the system optimization design can effectively improve thesystem stability.展开更多
In this paper, the chaotic response of a rotor system with crack supported on the squeeze film damper (SFD) is studied. Baesd on the short bearing approximation and π film assumption, the film force is expressed as a...In this paper, the chaotic response of a rotor system with crack supported on the squeeze film damper (SFD) is studied. Baesd on the short bearing approximation and π film assumption, the film force is expressed as a function of speed and displacement of the bearing in the X and Y directions. The result shows that the film force can suppress the non synchronous response effectively if an SFD is designed well. The increase of the bearing parameter can suppress chaos. When the bearing parameter is s...展开更多
Presents the study on the law governing the occurrence of bistable state in the squeeze film damper supported rigid rotor system by theoretical calculations,the way q calculating the bistable state characteristics, th...Presents the study on the law governing the occurrence of bistable state in the squeeze film damper supported rigid rotor system by theoretical calculations,the way q calculating the bistable state characteristics, the analysis of bistable state characteristics using bearing parameter B and mass eccentricity U as basic parameters, and the ranges of B and U values established, and concludes that the occurrence of bistable state can be avoided provided design parameters are properly selected so that the B and U values are not in the ranges established. This makes it convenient to optimize the squeeze film damper design parameters.展开更多
Rolling bearing and Squeeze Film Damper(SFD)are used in rotor support structures,and most researches on the nonlinear rotor-bearing system are focused on the simple rotor-bearing systems.This work emphasizes the compa...Rolling bearing and Squeeze Film Damper(SFD)are used in rotor support structures,and most researches on the nonlinear rotor-bearing system are focused on the simple rotor-bearing systems.This work emphasizes the comparative analysis of the influence of SFD on the nonlinear dynamic behavior of the dual-rotor system supported by rolling bearings.Firstly,a reduced dynamic model is established by combining the Finite Element(FE)method and the freeinterface method of component mode synthesis.The proposed model is verified by comparing the natural characteristics obtained from an FE model with those from the experiment.Then,the steady-state vibration responses of the system with or without SFD are solved by the numerical integration method.The influences of the ball bearing clearance,unbalance,centralizing spring stiffness and oil film clearance of SFD on the nonlinear steady-state vibration responses of the dual-rotor system are analyzed.Results show that SFD can effectively suppress the amplitude jump of the dual rotor system sustaining two rotors unbalance excitations.As the ball bearing clearance or unbalance increases,the amplitude jump phenomenon becomes more obvious,the resonance hysteresis phenomenon strengthens or weakens,the resonant peaks shift to the left or the right,respectively.SFD with unreasonable parameters will aggravate the system vibration,the smaller the oil film clearance,the better the damping performance of the SFD,the larger the centralizing spring stiffness is,the larger resonance amplitudes are.展开更多
To study the nonlinear dynamic behavior of the bladed overhang rotor system with squeeze film damper (SFD), a blade-overhang rotor-SFD model is formulated using the lumped mass method and the Lagrange approach. The ca...To study the nonlinear dynamic behavior of the bladed overhang rotor system with squeeze film damper (SFD), a blade-overhang rotor-SFD model is formulated using the lumped mass method and the Lagrange approach. The cavitated short bearing model is employed to describe the nonlinear oil force of the SFD. To reduce the scale of the nonlinear coupling system, a set of orthogonal transformations is employed to decouple the one nodal diameter equations of blades, which are coupled with the dy- namical equations of the rotor, with other equations of blades. In this way, the original system with 16+4n (n≥3) degrees of freedom (DoF) is reduced to a system with 24 DoF only. Then the parametric excitation terms in the blade-overhang rotor-SFD model are simplified in terms of periodic transforma- tions. The coupling equations are numerically solved and the solutions are used to analyze the dy- namic behavior of the system in terms of the bifurcation diagram, whirl orbit, Poincaré map and spec- trum plot. A variety of motion types are found such as multi-periodic, quasi-periodic, and chaotic mo- tions. Moreover, the typical nonlinear dynamic evolutions including the periodic-doubling bifurcation and reverse bifurcation are noted. It is noticed that there exist apparent differences in the dynamic behavior between the blade-overhang rotor-SFD models without and with considering the effect of blades.展开更多
Magnetorheological(MR)dampers show superior performance in reducing rotor vibration,but their high nonlinearity will cause nonsynchronous response,resulting in fatigue and instability of rotors.Herein,we are devoted t...Magnetorheological(MR)dampers show superior performance in reducing rotor vibration,but their high nonlinearity will cause nonsynchronous response,resulting in fatigue and instability of rotors.Herein,we are devoted to the investigation of the nonlinear characteristics of MR damper mounted on a flexible rotor.First,Reynolds equations with bilinear constitutive equations of MR fluid are employed to derive nonlinear oil film forces.Then,the Finite Element(FE)model of rotor system is developed,where the local nonlinear support forces produced by MR damper and its coupling effects with the rotor are considered.A hybrid numerical method is proposed to solve the nonlinear FE motion equations of the MR damper-rotor system.To validate the proposed model,a rotor test bench with two dual-coil MR dampers is constructed,upon which experimental studies on the dynamic characteristics of MR damper-rotor system are carried out.The effects of different system parameters,including rotational speed,excitation current and amount of unbalance,on nonlinear dynamic behaviors of MR damper-rotor system are evaluated.The results show that the system may appear chaos,jumping,and other complex nonlinear phenomena,and the level of the nonlinearity can be effectively alleviated by applying suitable excitation current and oil supply pressure.展开更多
Rotor system supported by nonlinear bearing such as squeeze film damper(SFD)is widely used in practice owing to its wide range of damping capacity and simplicity in structure.In this paper,an improved and effective In...Rotor system supported by nonlinear bearing such as squeeze film damper(SFD)is widely used in practice owing to its wide range of damping capacity and simplicity in structure.In this paper,an improved and effective Incremental transfer matrix method(ITMM)is first presented by combining ITMM and fast Fourier transform(FFT).Afterwards this method is applied to calculate the dynamic characteristics of a Jeffcott rotor system with SFD.The convergence dificulties incurred caused by strong nonlinearities of SFD has been dealt by adopting a control factor.It is found that for the more general boundary problems where the boundary conditions are not at input and output ends of a chain system,the supplementary equation is necessarily added.Additionally,the Floquet theory is used to analyze the stability and bifurcation type of the obtained periodic solution.The semi-analytical results,including the periodic solutions of the system,the bifurcation points and their types,are in good agreement with the numerical method.Furthermore,the involution mechanism of the quasi-periodic and chaotic motions near the first-order translational mode and the second order bending mode of this system is also clarified by this method with the aid of Floquet theory.展开更多
Misalignment faults in gear systems lead to violent vibration and noise, shortening the life of equipment. The aim of this work is the demonstration of vibration suppression of parallel-misaligned gear shafts using an...Misalignment faults in gear systems lead to violent vibration and noise, shortening the life of equipment. The aim of this work is the demonstration of vibration suppression of parallel-misaligned gear shafts using an integral squeeze film damper(ISFD). Using a first grade spur gear in engineering for reference, an open first-grade spur gear system is built and the vibration characteristics of the gear system with rigid supports and ISFD elastic damping supports are studied under different degrees of misalignment. The experimental results show that ISFD supports have excellent damping and vibration attenuation characteristics, which have improved control of the gear system vibration in horizontal, vertical and axial directions under different degrees of misalignment. This work shows that an ISFD structure can effectively suppress vibration of characteristic frequency components and resonance modulation frequency components. The test results provide evidence for the application of ISFD in vibration control of gear shaft misalignment faults in engineering.展开更多
Squeeze oil film damper are widely used in small high-speed aeroengine.But they are all made of high-hardness alloy steel. In order to improve their vibration absorption performance a new style of soft metal plated da...Squeeze oil film damper are widely used in small high-speed aeroengine.But they are all made of high-hardness alloy steel. In order to improve their vibration absorption performance a new style of soft metal plated damper has been studied. A coat of soft metal is plated on inner surface of the oil film ring, the surface will be deformed to some extent under the effect of oil film pressure. The characteristics of such dampers are calculated and analysed. Result shows that, compared with common damper, the new style damper can change oil film pressure distribution, enhance oil film damping, decrease stiffness, and reduce the force transfered to casing.展开更多
This paper explores an analytical model for Elastic Ring Squeeze Film Damper(ERSFD) with thin-walled ring and turbulent-jet orifices, and uncovers its Oil Film Pressure Performance(OFPP). Firstly, the ring deformation...This paper explores an analytical model for Elastic Ring Squeeze Film Damper(ERSFD) with thin-walled ring and turbulent-jet orifices, and uncovers its Oil Film Pressure Performance(OFPP). Firstly, the ring deformation is addressed by using the Fourier series expansion approach and the orifice outflow rate is characterized with the Prandtl boundary layer theory. Secondly, applying finite difference scheme, the influence of elastic ring flexibility, orifice diameter, and attitude angle on the OFPP is analyzed. Finally, Outer chamber pressure was measured experimentally at different rotor speeds. The results indicate that the outer chamber pressure coats an individual load-carrying region and spreads symmetrically pertaining to the attitude angle. Its amplitude drops as the elastic ring flexibility decreases but boosts with the reduction of the orifice diameter.For inner chamber pressure, the orifice diameter effects a similar trend to the outer cavity, but exhibits more stable distribution regarding the attitude angle. Minimizing the elastic ring flexibility causes an increase in amplitude. The model is validated by the test results giving that the outer chamber pressure shifts synchronously and periodically with the variation of the attitude angle,while the pressure amplitude increases slightly at higher rotor speeds.展开更多
Aiming at the problems existed in the squeeze film damper of the rotating machinery utilizing traditional passive dynamic pressure film bearing, a project of dynamic pressure and static pressure hybrid oil film bearin...Aiming at the problems existed in the squeeze film damper of the rotating machinery utilizing traditional passive dynamic pressure film bearing, a project of dynamic pressure and static pressure hybrid oil film bearing with piezoelectric crystal electrohydraulic active control supply orifice hole is proposed. For this kind of hybrid film bearing, the π film assumption can not hold true. In order to solve the pressure distribution, a new kind of solving method is proposed.展开更多
The effectiveness of variable parameter squeeze oil film damper (VPSFD) in the steady and transient unbalance response control of flexible rotors is examined.First, a preliminary property design of VPSFD is presente...The effectiveness of variable parameter squeeze oil film damper (VPSFD) in the steady and transient unbalance response control of flexible rotors is examined.First, a preliminary property design of VPSFD is presented on the improved finite length bearing theory.VPSFD is different from the conventional squeeze film damper, and is designed to possess continuous changeable oil film clearance and land length. These parameters can be exactly adjusted on a computer by sending commends to a special control device. Then, a simple rotor system with VPSFD is investigated. The experimental results show that VPSFD can attenuate the rotor system resonance peak due to unbalance.展开更多
Aero-engine rotor systems installed in aircraft are considered to have a base motion.In this paper,a flexible asymmetric rotor system is modeled considering the nonlinear supports of ball bearings and Squeeze Film Dam...Aero-engine rotor systems installed in aircraft are considered to have a base motion.In this paper,a flexible asymmetric rotor system is modeled considering the nonlinear supports of ball bearings and Squeeze Film Dampers(SFDs),and the dynamic characteristics of the rotor system under maneuvering flight are systematically studied.Effects of the translational accelerative motions,the angular motions and the pitching flight with combined translational and angular motions on nonlinear dynamic behavior of the rotor system are investigated.The results show that,due to the nonlinear coupled effects among the rotor,ball bearings and SFDs,within the first bending resonance region,responses of the rotor show obvious nonlinear characteristics such as bistable phenomenon,amplitude jumping phenomenon and non-synchronous vibration.Translational acceleration motion of the aircraft leads to axis offset of the rotor system and thus results in the reduction and the final disappearance of the bistable rotating speed region.The pitching angular motion mainly affects rotational vibration of the rotor system,and thus further induces their transverse vibrations.For the pitching flight with combined translational and angular motions,a critical flight parameter is found to correspond to the conversion of two steady responses of the rotor system,in which one response displays small amplitude and synchronous vibration,and the other shows large amplitude and non-synchronous vibration.展开更多
弹性环挤压油膜阻尼器(Elastic ring squeeze film damper, ERSFD)具有良好的支撑作用和减振效果,但由于其结构和流场耦合行为极为复杂,使得已有的物理模型难以完整表现出ERSFD的力学特性.为了进一步探究ERSFD的力学机理,本文借助有限...弹性环挤压油膜阻尼器(Elastic ring squeeze film damper, ERSFD)具有良好的支撑作用和减振效果,但由于其结构和流场耦合行为极为复杂,使得已有的物理模型难以完整表现出ERSFD的力学特性.为了进一步探究ERSFD的力学机理,本文借助有限元仿真平台,采用双向流固耦合的计算方法,剖析弹性环与油膜之间的相互作用,获取ERSFD中油膜压力的分布规律.在此基础上,利用最小二乘法进一步拟合出ERSFD等效刚度、等效阻尼与转子轴颈扰动位移的映射关系,并将其分别引入柔性转子系统动力学模型中.通过数值计算研究了ERSFD支撑下柔性转子系统的振动响应,分别给出了不同转速下转子系统的响应分岔图、轴心轨迹等.同时,通过对比分析,进一步揭示了ERSFD所诱发出的转子系统丰富的非线性动力学行为,有助于对ERSFD轴承支撑特性的理解.展开更多
基金the National Basic Research Program of China(No.2012CB026000)Key Laboratory Fund for Ship Vibration and Noise(No.614220406020717)National Science and Technology Major Project(No.2017-IV-0010-0047).
文摘Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces.
基金Supported by the National Science and Technology Major Project(No.2017-Ⅳ-0010-0047)the Fundamental Research Funds for the Central Universities(No.JD2003)。
文摘Conventional squeeze film dampers have numerous challenges including lock up,bistable response and incoordinate precession.In order to resolve these nonlinear problems,a novel G-type integral squeeze film damper(GISFD)is proposed in this research.The experimental test rig is provided to investigate the rotor system with an unbalanced single disk.Numerical simulation results show that the structural design of GISFD is reasonable,which can ensure its safe and stable operation.The influence of different support stiffnesses on the first-order speed of the rotor system is analyzed.Experimental results show that GISFD can effectively suppress the unbalanced response vibration of the rotor.In a certain range,it is found that the suppression effect of GISFD increases with the increase in the kinematic viscosity of the damping fluid.When the silicone oil with kinematic viscosity coefficients v=30.0 cm^(2)/s is employed,the vibration reduction of GISFD is approximately 71.51%.Furthermore,the experimental results show that with the increase of the unbalance,there is a linear relationship between the unbalance and the corresponding amplitude of the unbalanced response.It is concluded that GISFD has excellent linear damping characteristics and reduces the sensitivity of the rotor system to the unbalanced mass.
基金Supported by Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120002110011)State Key Laboratory of Hydroscience and Engineering(Grant No.2014-KY-05)+1 种基金Tsinghua Scholarship for Overseas Graduate Studies,China(Grant No.2013128)Special Funds for Marine Renewable Engergy Projects(Grant No.GHME2012GC02)
文摘Many industrial applications and experiments have shown that sliding bearings often experience fluid film whip due to nonlinear fluid film forces which can cause rotor-stator rub-impact failures. The oil-film whips have attracted many studies while the water-film whips in the water lubricated sliding bearing have been little researched with the mechanism still an open problem. The dynamic fluid film forces in a water sliding bearing are investigated numerically with rotational, whirling and squeezing motions of the journal using a nonlinear model to identify the relationships between the three motions. Rotor speed-up and slow-down experiments are then conducted with the rotor system supported by a water lubricated sliding bearing to induce the water-film whirl/whip and verify the relationship. The experimental results show that the vibrations of the journal alternated between increasing and decreasing rather than continuously increasing as the rotational speed increased to twice the first critical speed, which can be explained well by the nonlinear model. The radial growth rate of the whirl motion greatly affects the whirl frequency of the journal and is responsible for the frequency lock in the water-film whip. Further analysis shows that increasing the lubricating water flow rate changes the water-film whirl/whip characteristics, reduces the first critical speed, advances the time when significant water-film whirling motion occurs, and also increases the vibration amplitude at the bearing center which may lead to the rotor-stator rub-impact. The study gives the insight into the water-film whirl and whip in the water lubricated sliding bearing.
基金Supported by the National Science and Technology Major Project(No.2017-Ⅳ-0010-0047)Key Laboratory Fund for Ship Vibration and Noise(No.614220406020717)+1 种基金China Postdoctoral Science Foundation Funded Project(No.2020M670113)the Fundamental Research Funds for the Central Universities(No.JD2003)。
文摘This paper aims at investigating the effectiveness of squeeze oil film in suppressing the longitudinal vibration of propulsion shaft systems through a novel integral axial squeeze film damper(IASFD).After designing the IASFD,a propulsion shafting test rig for the longitudinal vibration control is built.Longitudinal vibration control experiments of the propulsion shafting are carried out under different magnitude and frequency of the excitation force.The results show that both IASFD elastic support and IASFD elastic damping support have excellent vibration attenuation characteristics,and can effectively suppress the longitudinal vibration of the shaft system in a wide frequency range.However,IASFD elastic damping support has a more significant vibration reduction effect than the other supports,and increasing the damping of the system has obvious effect on reducing the shafting vibration.For an excitation force of 45 N,the maximum reduction of the vibration amplitude is 89.16%.Also,the vibration generated by the resonance phenomenon is also significantly reduced.
文摘In this paper, a dynamic model on a rigid rotor sliding bearing system with a SFD is established. The stability and bifurcation behaviors of the system are studied. On the basis of the differential equations of fluid momentum and mass continuity, the distribution pressure function is derived by taking oil film inertia force into consideration. Damping force, clearance excitation force, interference force of different frequencies and static load are also considered in the model. Finally, the governing equations of the stability and bifurcation behaviors of the system are solved by Floquet theory. Simulation of dynamic model shows that the rigid rotor sliding bearing system can maintain stability and exhibit a Hopf bifurcation phenomenon in a certain range.
基金Supported by the National Science and Technology Major Project(No.2017-IV-0010-0047)China Postdoctoral Science Foundation FundedProject(No.2020M670113)Fundamental Research Funds for the Central Universities(No.JY2105)。
文摘When the actual installation center distance between a pair of spur gears is greater than the theoretical center distance,backlash increases,leading to increased vibration and noise.The structural parameters of an integral squeeze film damper(ISFD)were designed with the stiffness of rigid support as reference to investigate the effect of an ISFD on the dynamic characteristics of a spur gear transmission system with center-distance installation error.A spur gear test bench with center distance-error was built to investigate the vibration and noise reduction characteristics of ISFD.The experimental results indicate that,compared with a rigid support,the ISFD can reduce vibration by approximately 40%and noise by approximately 5 d B.ISFD can effectively absorb the impact energy caused by an increase of in backlash,which is conducive to the stable operation of the spur gear transmission system.
文摘A dynamic model of a flexible rotor-sliding bearing system ( FRSBS ) with asqueeze film damper ( SFD) is established. Considered in the model are oil film inertia force,damping farce, clearance excitation force, interference force of different frequencies and staticload, as opposed to previous research. On the basis of this model, the optimal design of the systemis deeply studied. Simulation shows that the system optimization design can effectively improve thesystem stability.
基金National Natural Science F oundationAeronautical Science Foundation of China(0 0 C5 3 0 2 4)
文摘In this paper, the chaotic response of a rotor system with crack supported on the squeeze film damper (SFD) is studied. Baesd on the short bearing approximation and π film assumption, the film force is expressed as a function of speed and displacement of the bearing in the X and Y directions. The result shows that the film force can suppress the non synchronous response effectively if an SFD is designed well. The increase of the bearing parameter can suppress chaos. When the bearing parameter is s...
文摘Presents the study on the law governing the occurrence of bistable state in the squeeze film damper supported rigid rotor system by theoretical calculations,the way q calculating the bistable state characteristics, the analysis of bistable state characteristics using bearing parameter B and mass eccentricity U as basic parameters, and the ranges of B and U values established, and concludes that the occurrence of bistable state can be avoided provided design parameters are properly selected so that the B and U values are not in the ranges established. This makes it convenient to optimize the squeeze film damper design parameters.
基金supported by the National Natural Science Foundation of China(Nos.11772089,11972112)the Fundamental Research Funds for the Central Universities,China(Nos.N170308028,N2003014 and N180708009)LiaoNing Revitalization Talents Program,China(Nos.XLYC1807008)。
文摘Rolling bearing and Squeeze Film Damper(SFD)are used in rotor support structures,and most researches on the nonlinear rotor-bearing system are focused on the simple rotor-bearing systems.This work emphasizes the comparative analysis of the influence of SFD on the nonlinear dynamic behavior of the dual-rotor system supported by rolling bearings.Firstly,a reduced dynamic model is established by combining the Finite Element(FE)method and the freeinterface method of component mode synthesis.The proposed model is verified by comparing the natural characteristics obtained from an FE model with those from the experiment.Then,the steady-state vibration responses of the system with or without SFD are solved by the numerical integration method.The influences of the ball bearing clearance,unbalance,centralizing spring stiffness and oil film clearance of SFD on the nonlinear steady-state vibration responses of the dual-rotor system are analyzed.Results show that SFD can effectively suppress the amplitude jump of the dual rotor system sustaining two rotors unbalance excitations.As the ball bearing clearance or unbalance increases,the amplitude jump phenomenon becomes more obvious,the resonance hysteresis phenomenon strengthens or weakens,the resonant peaks shift to the left or the right,respectively.SFD with unreasonable parameters will aggravate the system vibration,the smaller the oil film clearance,the better the damping performance of the SFD,the larger the centralizing spring stiffness is,the larger resonance amplitudes are.
基金Supported by the National Natural Science Foundation of China (Grant No. 10632040)the Natural Science Foundation of Hei-Long-Jiang Province of China (Grant No. ZJG0704)the Harbin Science & Technology Innovative Foundation of China (Grant No. 2007RFLXG009)
文摘To study the nonlinear dynamic behavior of the bladed overhang rotor system with squeeze film damper (SFD), a blade-overhang rotor-SFD model is formulated using the lumped mass method and the Lagrange approach. The cavitated short bearing model is employed to describe the nonlinear oil force of the SFD. To reduce the scale of the nonlinear coupling system, a set of orthogonal transformations is employed to decouple the one nodal diameter equations of blades, which are coupled with the dy- namical equations of the rotor, with other equations of blades. In this way, the original system with 16+4n (n≥3) degrees of freedom (DoF) is reduced to a system with 24 DoF only. Then the parametric excitation terms in the blade-overhang rotor-SFD model are simplified in terms of periodic transforma- tions. The coupling equations are numerically solved and the solutions are used to analyze the dy- namic behavior of the system in terms of the bifurcation diagram, whirl orbit, Poincaré map and spec- trum plot. A variety of motion types are found such as multi-periodic, quasi-periodic, and chaotic mo- tions. Moreover, the typical nonlinear dynamic evolutions including the periodic-doubling bifurcation and reverse bifurcation are noted. It is noticed that there exist apparent differences in the dynamic behavior between the blade-overhang rotor-SFD models without and with considering the effect of blades.
基金supports from National Natural Science Foundation of China(No.11972204)Natural Science Foundation of Tianjin,China(No.19JCQNJC02500)。
文摘Magnetorheological(MR)dampers show superior performance in reducing rotor vibration,but their high nonlinearity will cause nonsynchronous response,resulting in fatigue and instability of rotors.Herein,we are devoted to the investigation of the nonlinear characteristics of MR damper mounted on a flexible rotor.First,Reynolds equations with bilinear constitutive equations of MR fluid are employed to derive nonlinear oil film forces.Then,the Finite Element(FE)model of rotor system is developed,where the local nonlinear support forces produced by MR damper and its coupling effects with the rotor are considered.A hybrid numerical method is proposed to solve the nonlinear FE motion equations of the MR damper-rotor system.To validate the proposed model,a rotor test bench with two dual-coil MR dampers is constructed,upon which experimental studies on the dynamic characteristics of MR damper-rotor system are carried out.The effects of different system parameters,including rotational speed,excitation current and amount of unbalance,on nonlinear dynamic behaviors of MR damper-rotor system are evaluated.The results show that the system may appear chaos,jumping,and other complex nonlinear phenomena,and the level of the nonlinearity can be effectively alleviated by applying suitable excitation current and oil supply pressure.
文摘Rotor system supported by nonlinear bearing such as squeeze film damper(SFD)is widely used in practice owing to its wide range of damping capacity and simplicity in structure.In this paper,an improved and effective Incremental transfer matrix method(ITMM)is first presented by combining ITMM and fast Fourier transform(FFT).Afterwards this method is applied to calculate the dynamic characteristics of a Jeffcott rotor system with SFD.The convergence dificulties incurred caused by strong nonlinearities of SFD has been dealt by adopting a control factor.It is found that for the more general boundary problems where the boundary conditions are not at input and output ends of a chain system,the supplementary equation is necessarily added.Additionally,the Floquet theory is used to analyze the stability and bifurcation type of the obtained periodic solution.The semi-analytical results,including the periodic solutions of the system,the bifurcation points and their types,are in good agreement with the numerical method.Furthermore,the involution mechanism of the quasi-periodic and chaotic motions near the first-order translational mode and the second order bending mode of this system is also clarified by this method with the aid of Floquet theory.
基金Supported by the National Basic Research Program of China(No.2012CB026000)2015 Beijing Scientific Research and Graduate Training Project(No.0318-21510028008)Key Laboratory Fund for Ship Vibration and Noise(No.614220406020717)
文摘Misalignment faults in gear systems lead to violent vibration and noise, shortening the life of equipment. The aim of this work is the demonstration of vibration suppression of parallel-misaligned gear shafts using an integral squeeze film damper(ISFD). Using a first grade spur gear in engineering for reference, an open first-grade spur gear system is built and the vibration characteristics of the gear system with rigid supports and ISFD elastic damping supports are studied under different degrees of misalignment. The experimental results show that ISFD supports have excellent damping and vibration attenuation characteristics, which have improved control of the gear system vibration in horizontal, vertical and axial directions under different degrees of misalignment. This work shows that an ISFD structure can effectively suppress vibration of characteristic frequency components and resonance modulation frequency components. The test results provide evidence for the application of ISFD in vibration control of gear shaft misalignment faults in engineering.
文摘Squeeze oil film damper are widely used in small high-speed aeroengine.But they are all made of high-hardness alloy steel. In order to improve their vibration absorption performance a new style of soft metal plated damper has been studied. A coat of soft metal is plated on inner surface of the oil film ring, the surface will be deformed to some extent under the effect of oil film pressure. The characteristics of such dampers are calculated and analysed. Result shows that, compared with common damper, the new style damper can change oil film pressure distribution, enhance oil film damping, decrease stiffness, and reduce the force transfered to casing.
基金supported by the National Natural Science Foundation of China(No.52005158)。
文摘This paper explores an analytical model for Elastic Ring Squeeze Film Damper(ERSFD) with thin-walled ring and turbulent-jet orifices, and uncovers its Oil Film Pressure Performance(OFPP). Firstly, the ring deformation is addressed by using the Fourier series expansion approach and the orifice outflow rate is characterized with the Prandtl boundary layer theory. Secondly, applying finite difference scheme, the influence of elastic ring flexibility, orifice diameter, and attitude angle on the OFPP is analyzed. Finally, Outer chamber pressure was measured experimentally at different rotor speeds. The results indicate that the outer chamber pressure coats an individual load-carrying region and spreads symmetrically pertaining to the attitude angle. Its amplitude drops as the elastic ring flexibility decreases but boosts with the reduction of the orifice diameter.For inner chamber pressure, the orifice diameter effects a similar trend to the outer cavity, but exhibits more stable distribution regarding the attitude angle. Minimizing the elastic ring flexibility causes an increase in amplitude. The model is validated by the test results giving that the outer chamber pressure shifts synchronously and periodically with the variation of the attitude angle,while the pressure amplitude increases slightly at higher rotor speeds.
文摘Aiming at the problems existed in the squeeze film damper of the rotating machinery utilizing traditional passive dynamic pressure film bearing, a project of dynamic pressure and static pressure hybrid oil film bearing with piezoelectric crystal electrohydraulic active control supply orifice hole is proposed. For this kind of hybrid film bearing, the π film assumption can not hold true. In order to solve the pressure distribution, a new kind of solving method is proposed.
文摘The effectiveness of variable parameter squeeze oil film damper (VPSFD) in the steady and transient unbalance response control of flexible rotors is examined.First, a preliminary property design of VPSFD is presented on the improved finite length bearing theory.VPSFD is different from the conventional squeeze film damper, and is designed to possess continuous changeable oil film clearance and land length. These parameters can be exactly adjusted on a computer by sending commends to a special control device. Then, a simple rotor system with VPSFD is investigated. The experimental results show that VPSFD can attenuate the rotor system resonance peak due to unbalance.
基金the National Key Basic Research Program of China(No.2015CB057400)the National Natural Science Foundation of China(Nos.11672201 and 11872045)the Major Special Basic Research Projects for Aeroengines and Gas Turbines(No.2017-IV-0008-0045)。
文摘Aero-engine rotor systems installed in aircraft are considered to have a base motion.In this paper,a flexible asymmetric rotor system is modeled considering the nonlinear supports of ball bearings and Squeeze Film Dampers(SFDs),and the dynamic characteristics of the rotor system under maneuvering flight are systematically studied.Effects of the translational accelerative motions,the angular motions and the pitching flight with combined translational and angular motions on nonlinear dynamic behavior of the rotor system are investigated.The results show that,due to the nonlinear coupled effects among the rotor,ball bearings and SFDs,within the first bending resonance region,responses of the rotor show obvious nonlinear characteristics such as bistable phenomenon,amplitude jumping phenomenon and non-synchronous vibration.Translational acceleration motion of the aircraft leads to axis offset of the rotor system and thus results in the reduction and the final disappearance of the bistable rotating speed region.The pitching angular motion mainly affects rotational vibration of the rotor system,and thus further induces their transverse vibrations.For the pitching flight with combined translational and angular motions,a critical flight parameter is found to correspond to the conversion of two steady responses of the rotor system,in which one response displays small amplitude and synchronous vibration,and the other shows large amplitude and non-synchronous vibration.
文摘弹性环挤压油膜阻尼器(Elastic ring squeeze film damper, ERSFD)具有良好的支撑作用和减振效果,但由于其结构和流场耦合行为极为复杂,使得已有的物理模型难以完整表现出ERSFD的力学特性.为了进一步探究ERSFD的力学机理,本文借助有限元仿真平台,采用双向流固耦合的计算方法,剖析弹性环与油膜之间的相互作用,获取ERSFD中油膜压力的分布规律.在此基础上,利用最小二乘法进一步拟合出ERSFD等效刚度、等效阻尼与转子轴颈扰动位移的映射关系,并将其分别引入柔性转子系统动力学模型中.通过数值计算研究了ERSFD支撑下柔性转子系统的振动响应,分别给出了不同转速下转子系统的响应分岔图、轴心轨迹等.同时,通过对比分析,进一步揭示了ERSFD所诱发出的转子系统丰富的非线性动力学行为,有助于对ERSFD轴承支撑特性的理解.