This paper presents a generalized method for updating approximations of a concept incrementally, which can be used as an effective tool to deal with dynamic attribute generalization. By combining this method and the L...This paper presents a generalized method for updating approximations of a concept incrementally, which can be used as an effective tool to deal with dynamic attribute generalization. By combining this method and the LERS inductive learning algorithm, it also introduces a generalized quasi incremental algorithm for learning classification rules from data bases.展开更多
A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking appl...A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking application.In this new algorithm,the measurements lying in the intersection of two or more validation regions are allocated to the corresponding targets through rough set theory,and the multi-target tracking problem is transformed into a single target tracking after the classification of measurements lying in the intersection region.Several typical multi-target tracking applications are given.The simulation results show that the algorithm can not only reduce the complexity and time consumption but also enhance the accuracy and stability of the tracking results.展开更多
This article states the poor database which is very common when being used them. So the demanding database must be all-round, effective collection. When the offering database is poor database, it will affect the appli...This article states the poor database which is very common when being used them. So the demanding database must be all-round, effective collection. When the offering database is poor database, it will affect the application of Supporter Deciding. To this question, the author brings out one solution to solve the poor database basing on the Rough Sets Theory. It can scientifically, correctly, effectively supplement the poor database, and can offer greatly help to enforce the application of data and artificial intelligence.展开更多
Many real-life data sets are incomplete,or in different words,are affected by missing attribute values.Three interpretations of missing attribute values are discussed in the paper:lost values(erased values),attribute-...Many real-life data sets are incomplete,or in different words,are affected by missing attribute values.Three interpretations of missing attribute values are discussed in the paper:lost values(erased values),attribute-concept values(such a value may be replaced by any value from the attribute domain restricted to the concept),and "do not care" conditions(a missing attribute value may be replaced by any value from the attribute domain).For incomplete data sets three definitions of lower and upper approximations are discussed.Experiments were conducted on six typical data sets with missing attribute values,using three different interpretations of missing attribute values and the same definition of concept lower and upper approximations.The conclusion is that the best approach to missing attribute values is the lost value type.展开更多
Rough set theory is relativly new to area of soft computing to handle the uncertain big data efficiently. It also provides a powerful way to calculate the importance degree of vague and uncertain big data to help in d...Rough set theory is relativly new to area of soft computing to handle the uncertain big data efficiently. It also provides a powerful way to calculate the importance degree of vague and uncertain big data to help in decision making. Risk assessment is very important for safe and reliable investment. Risk management involves assessing the risk sources and designing strategies and procedures to mitigate those risks to an acceptable level. In this paper, we emphasize on classification of different types of risk factors and find a simple and effective way to calculate the risk exposure.. The study uses rough set method to classify and judge the safety attributes related to investment policy. The method which based on intelligent knowledge accusation provides an innovative way for risk analysis. From this approach, we are able to calculate the significance of each factor and relative risk exposure based on the original data without assigning the weight subjectively.展开更多
文摘This paper presents a generalized method for updating approximations of a concept incrementally, which can be used as an effective tool to deal with dynamic attribute generalization. By combining this method and the LERS inductive learning algorithm, it also introduces a generalized quasi incremental algorithm for learning classification rules from data bases.
文摘A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking application.In this new algorithm,the measurements lying in the intersection of two or more validation regions are allocated to the corresponding targets through rough set theory,and the multi-target tracking problem is transformed into a single target tracking after the classification of measurements lying in the intersection region.Several typical multi-target tracking applications are given.The simulation results show that the algorithm can not only reduce the complexity and time consumption but also enhance the accuracy and stability of the tracking results.
文摘This article states the poor database which is very common when being used them. So the demanding database must be all-round, effective collection. When the offering database is poor database, it will affect the application of Supporter Deciding. To this question, the author brings out one solution to solve the poor database basing on the Rough Sets Theory. It can scientifically, correctly, effectively supplement the poor database, and can offer greatly help to enforce the application of data and artificial intelligence.
文摘Many real-life data sets are incomplete,or in different words,are affected by missing attribute values.Three interpretations of missing attribute values are discussed in the paper:lost values(erased values),attribute-concept values(such a value may be replaced by any value from the attribute domain restricted to the concept),and "do not care" conditions(a missing attribute value may be replaced by any value from the attribute domain).For incomplete data sets three definitions of lower and upper approximations are discussed.Experiments were conducted on six typical data sets with missing attribute values,using three different interpretations of missing attribute values and the same definition of concept lower and upper approximations.The conclusion is that the best approach to missing attribute values is the lost value type.
文摘Rough set theory is relativly new to area of soft computing to handle the uncertain big data efficiently. It also provides a powerful way to calculate the importance degree of vague and uncertain big data to help in decision making. Risk assessment is very important for safe and reliable investment. Risk management involves assessing the risk sources and designing strategies and procedures to mitigate those risks to an acceptable level. In this paper, we emphasize on classification of different types of risk factors and find a simple and effective way to calculate the risk exposure.. The study uses rough set method to classify and judge the safety attributes related to investment policy. The method which based on intelligent knowledge accusation provides an innovative way for risk analysis. From this approach, we are able to calculate the significance of each factor and relative risk exposure based on the original data without assigning the weight subjectively.