期刊文献+
共找到532篇文章
< 1 2 27 >
每页显示 20 50 100
CALL FOR PAPERS Workshop on Intelligence and Security Informatics (WISI’06) in conjunction with the Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD’06)
1
《复杂系统与复杂性科学》 EI CSCD 2005年第1期84-86,共3页
Important Dates Submission due November 15, 2005 Notification of acceptance December 30, 2005 Camera-ready copy due January 10, 2006 Workshop Scope Intelligence and Security Informatics (ISI) can be broadly defined as... Important Dates Submission due November 15, 2005 Notification of acceptance December 30, 2005 Camera-ready copy due January 10, 2006 Workshop Scope Intelligence and Security Informatics (ISI) can be broadly defined as the study of the development and use of advanced information technologies and systems for national and international security-related applications. The First and Second Symposiums on ISI were held in Tucson,Arizona,in 2003 and 2004,respectively. In 2005,the IEEE International Conference on ISI was held in Atlanta,Georgia. These ISI conferences have brought together academic researchers,law enforcement and intelligence experts,information technology consultant and practitioners to discuss their research and practice related to various ISI topics including ISI data management,data and text mining for ISI applications,terrorism informatics,deception detection,terrorist and criminal social network analysis,crime analysis,monitoring and surveillance,policy studies and evaluation,information assurance,among others. We continue this stream of ISI conferences by organizing the Workshop on Intelligence and Security Informatics (WISI’06) in conjunction with the Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD’06). WISI’06 will provide a stimulating forum for ISI researchers in Pacific Asia and other regions of the world to exchange ideas and report research progress. The workshop also welcomes contributions dealing with ISI challenges specific to the Pacific Asian region. 展开更多
关键词 SECURITY in conjunction with the Pacific Asia Conference on knowledge discovery and data mining CALL FOR PAPERS Workshop on Intelligence and Security Informatics ASIA
下载PDF
Knowledge Discovery in Data: A Case Study
2
作者 Ahmed Hammad Simaan AbouRizk 《Journal of Computer and Communications》 2014年第5期1-28,共28页
It is common in industrial construction projects for data to be collected and discarded without being analyzed to extract useful knowledge. A proposed integrated methodology based on a five-step Knowledge Discovery in... It is common in industrial construction projects for data to be collected and discarded without being analyzed to extract useful knowledge. A proposed integrated methodology based on a five-step Knowledge Discovery in Data (KDD) model was developed to address this issue. The framework transfers existing multidimensional historical data from completed projects into useful knowledge for future projects. The model starts by understanding the problem domain, industrial construction projects. The second step is analyzing the problem data and its multiple dimensions. The target dataset is the labour resources data generated while managing industrial construction projects. The next step is developing the data collection model and prototype data ware-house. The data warehouse stores collected data in a ready-for-mining format and produces dynamic On Line Analytical Processing (OLAP) reports and graphs. Data was collected from a large western-Canadian structural steel fabricator to prove the applicability of the developed methodology. The proposed framework was applied to three different case studies to validate the applicability of the developed framework to real projects data. 展开更多
关键词 CONSTRUCTION MANAGEMENT Project MANAGEMENT knowledge MANAGEMENT data Warehousing data mining knowledge discovery in data (KDD) Industrial CONSTRUCTION Labour RESOURCES
下载PDF
A New Approach for Knowledge Discovery in Distributed Databases Using Fragmented Data Storage Model
3
作者 Masoud Pesaran Behbahani Islam Choudhury Souheil Khaddaj 《Chinese Business Review》 2013年第12期834-845,共12页
Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new genera... Since the early 1990, significant progress in database technology has provided new platform for emerging new dimensions of data engineering. New models were introduced to utilize the data sets stored in the new generations of databases. These models have a deep impact on evolving decision-support systems. But they suffer a variety of practical problems while accessing real-world data sources. Specifically a type of data storage model based on data distribution theory has been increasingly used in recent years by large-scale enterprises, while it is not compatible with existing decision-support models. This data storage model stores the data in different geographical sites where they are more regularly accessed. This leads to considerably less inter-site data transfer that can reduce data security issues in some circumstances and also significantly improve data manipulation transactions speed. The aim of this paper is to propose a new approach for supporting proactive decision-making that utilizes a workable data source management methodology. The new model can effectively organize and use complex data sources, even when they are distributed in different sites in a fragmented form. At the same time, the new model provides a very high level of intellectual management decision-support by intelligent use of the data collections through utilizing new smart methods in synthesizing useful knowledge. The results of an empirical study to evaluate the model are provided. 展开更多
关键词 data mining decision-support system distributed databases knowledge discovery in database (KDD)
下载PDF
Linking Competitors’ Knowledge and Developing Innovative Products Using Data Mining Techniques
4
作者 Nasimalsadat Saesi Mohammad Taleghani 《Journal of Computer and Communications》 2023年第7期37-57,共21页
In this article, the relationship between the knowledge of competitors and the development of new products in the field of capital medical equipment has been investigated. In order to identify the criteria for measuri... In this article, the relationship between the knowledge of competitors and the development of new products in the field of capital medical equipment has been investigated. In order to identify the criteria for measuring competitors’ knowledge and developing new capital medical equipment products, marketing experts were interviewed and then a researcher-made questionnaire was compiled and distributed among the statistical sample of the research. Also, in order to achieve the goals of the research, a questionnaire among 100 members of the statistical community was selected, distributed and collected. To analyze the gathered data, the structural equation modeling (SEM) method was used in the SMART PLS 2 software to estimate the model and then the K-MEAN approach was used to cluster the capital medical equipment market based on the knowledge of actual and potential competitors. The results have shown that the knowledge of potential and actual competitors has a positive and significant effect on the development of new products in the capital medical equipment market. From the point of view of the knowledge of actual competitors, the market of “MRI”, “Ultrasound” and “SPECT” is grouped in the low knowledge cluster;“Pet MRI”, “CT Scan”, “Mammography”, “Radiography, Fluoroscopy and CRM”, “Pet CT”, “SPECT CT” and “Gamma Camera” markets are clustered in the medium knowledge. Finally, “Angiography” and “CBCT” markets are located in the knowledge cluster. From the perspective of knowledge of potential competitors, the market of “angiography”, “mammography”, “SPECT” and “SPECT CT” in the low knowledge cluster, “CT scan”, “radiography, fluoroscopy and CRM”, “pet CT”, “CBCT” markets in the medium knowledge cluster and “MRI”, “pet MRI”, “ultrasound” and “gamma camera” markets in the high knowledge cluster are located. 展开更多
关键词 knowledge of Competitors Development of Products Innovative Products data mining data mining Techniques medical Capital Goods medical Capital Goods Market
下载PDF
基于网络环境的分布式KDD及Data Mining研究 被引量:6
5
作者 何炎祥 彭锋 +2 位作者 宋文欣 熊汉卫 陈莘萌 《小型微型计算机系统》 CSCD 北大核心 1999年第10期744-746,共3页
本文针对KDD 的研究现状及其面临的挑战,主要讨论了基于网络环境下,面向多个站点机、多种数据库、多类数据源的分布式KDD 和Data Mining 的整体方案和实验系统模型,研究内容包括高效分布式开采算法,KDD 过程的... 本文针对KDD 的研究现状及其面临的挑战,主要讨论了基于网络环境下,面向多个站点机、多种数据库、多类数据源的分布式KDD 和Data Mining 的整体方案和实验系统模型,研究内容包括高效分布式开采算法,KDD 过程的无缝集成,KDD 中的知识表示。 展开更多
关键词 知识发现 数据开采 知识表示 可视化 数据库系统
下载PDF
An improved association-mining research for exploring Chinese herbal property theory: based on data of the Shennong's Classic of Materia Medica 被引量:15
6
作者 Rui Jin Zhi-jian Lin +1 位作者 Chun-miao Xue Bing Zhang 《Journal of Integrative Medicine》 SCIE CAS CSCD 2013年第5期352-365,共14页
Knowledge Discovery in Databases is gaining attention and raising new hopes for traditional Chinese medicine (TCM) researchers. It is a useful tool in understanding and deciphering TCM theories. Aiming for a better ... Knowledge Discovery in Databases is gaining attention and raising new hopes for traditional Chinese medicine (TCM) researchers. It is a useful tool in understanding and deciphering TCM theories. Aiming for a better understanding of Chinese herbal property theory (CHPT), this paper performed an improved association rule learning to analyze semistructured text in the book entitled Shennong's Classic of Materia Medica. The text was firstly annotated and transformed to well-structured multidimensional data. Subsequently, an Apriori algorithm was employed for producing association rules after the sensitivity analysis of parameters. From the confirmed 120 resulting rules that described the intrinsic relationships between herbal property (qi, flavor and their combinations) and herbal efficacy, two novel fundamental principles underlying CHPT were acquired and further elucidated: (1) the many-to-one mapping of herbal efficacy to herbal property; (2) the nonrandom overlap between the related efficacy of qi and flavor. This work provided an innovative knowledge about CHPT, which would be helpful for its modern research. 展开更多
关键词 traditional Chinese medicine Chinese herbal property theory association rulelearning knowledge discovery data mining
下载PDF
Research on Rolling Load Distribution Method based on Data Mining 被引量:1
7
作者 ZHANG Yan-hua LIU Xiang-hua WANG Guo-dong 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2005年第6期30-32,53,共4页
A new method of establishing rolling load distribution model was developed by online intelligent information-processing technology for plate rolling. The model combines knowledge model and mathematical model with usin... A new method of establishing rolling load distribution model was developed by online intelligent information-processing technology for plate rolling. The model combines knowledge model and mathematical model with using knowledge discovery in database (KDD) and data mining (DM) as the start. The online maintenance and optimization of the load model are realized. The effectiveness of this new method was testified by offline simulation and online application. 展开更多
关键词 rolling load distribution information processing knowledge discovery data mining
下载PDF
Construction and Application of the Multidimensional Table for Knowledge Discovery in Ancient Chinese Books on Materia Medica 被引量:1
8
作者 Rui Jin Qian Lin +2 位作者 Jun Zhou Boyu Sun Bing Zhang 《Engineering(科研)》 2013年第10期1-6,共6页
Knowledge discovery, as an increasingly adopted information technology in biomedical science, has shown great promise in the field of Traditional Chinese Medicine (TCM). In this paper, we provided a kind of multidimen... Knowledge discovery, as an increasingly adopted information technology in biomedical science, has shown great promise in the field of Traditional Chinese Medicine (TCM). In this paper, we provided a kind of multidimensional table which was well suited for organizing and analyzing the data in ancient Chinese books on Materia Medica. Moreover, we demonstrated its capability of facilitating further mining works in TCM through two illustrative studies of discovering meaningful patterns in the three-dimensional table of Shennong’s Classic of Materia Medica. This work might provide an appropriate data model for the development of knowledge discovery in TCM. 展开更多
关键词 MULTIDIMENSIONAL TABLE TCM HERBAL MEDICINE data mining knowledge discovery
下载PDF
REMOTE SENSING IMAGE CLASSIFICATION WITH GIS DATA BASED ON SPATIAL DATA MINING TECHNIQUES
9
作者 Di Kaichang Li Deren Li Deyi 《Geo-Spatial Information Science》 2000年第4期30-35,共6页
Data mining techniques are used to discover knowledge from GIS database in order to improve remote sensing image classification.Two learning granularities are proposed for inductive learning from spatial data,one is s... Data mining techniques are used to discover knowledge from GIS database in order to improve remote sensing image classification.Two learning granularities are proposed for inductive learning from spatial data,one is spatial object granularity,the other is pixel granularity.We also present an approach to combine inductive learning with conventional image classification methods,which selects class probability of Bayes classification as learning attributes.A land use classification experiment is performed in the Beijing area using SPOT multi_spectral image and GIS data.Rules about spatial distribution patterns and shape features are discovered by C5.0 inductive learning algorithm and then the image is reclassified by deductive reasoning.Comparing with the result produced only by Bayes classification,the overall accuracy increased by 11% and the accuracy of some classes,such as garden and forest,increased by about 30%.The results indicate that inductive learning can resolve spectral confusion to a great extent.Combining Bayes method with inductive learning not only improves classification accuracy greatly,but also extends the classification by subdividing some classes with the discovered knowledge. 展开更多
关键词 data mining knowledge discovery image classification INDUCTIVE LEARNING LEARNING GRANULARITY
下载PDF
Integrated Solution for Discovery of Literature Information Knowledge
10
作者 徐慧 《International Journal of Mining Science and Technology》 SCIE EI 2000年第2期91-94,共4页
An integrated solution for discovery of literature information knowledge is proposed. The analytic model of literature Information model and discovery of literature information knowledge are illustrated. Practical ill... An integrated solution for discovery of literature information knowledge is proposed. The analytic model of literature Information model and discovery of literature information knowledge are illustrated. Practical illustrative example for discovery of literature information knowledge is given. 展开更多
关键词 knowledge discovery data mining data WAREHOUSE dataBASE Weh
下载PDF
Structural choice based on knowledge discovery system
11
作者 XING Fangliang(邢方亮) +1 位作者 WANG Guangyuan(王光远) 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2002年第3期263-266,共4页
Structural choice is a significant decision having an important influence on structural function, social economics, structural reliability and construction cost. A Case Based Reasoning system with its retrieval part c... Structural choice is a significant decision having an important influence on structural function, social economics, structural reliability and construction cost. A Case Based Reasoning system with its retrieval part constructed with a KDD subsystem, is put forward to make a decision for a large scale engineering project. A typical CBR system consists of four parts: case representation, case retriever, evaluation, and adaptation. A case library is a set of parameterized excellent and successful structures. For a structural choice, the key point is that the system must be able to detect the pattern classes hidden in the case library and classify the input parameters into classes properly. That is done by using the KDD Data Mining algorithm based on Self Organizing Feature Maps (SOFM), which makes the whole system more adaptive, self organizing, self learning and open. 展开更多
关键词 knowledge discovery in dataBASE data mining SELF-ORGANIZING feature MAPS STRUCTURAL CHOICE
下载PDF
Method and Application of Comprehensive Knowledge Discovery
12
作者 SHAZongyao BIANFuling 《Geo-Spatial Information Science》 2003年第3期48-55,共8页
This paper proposes the principle of comprehensive knowledge discovery. Unlike most of the current knowledge discovery methods, the comprehensive knowledge discovery considers both the spatial relations and attributes... This paper proposes the principle of comprehensive knowledge discovery. Unlike most of the current knowledge discovery methods, the comprehensive knowledge discovery considers both the spatial relations and attributes of spatial entities or objects. We introduce the theory of spatial knowledge expression system and some concepts including comprehensive knowledge discovery and spatial union information table (SUIT). In theory, SUIT records all information contained in the studied objects, but in reality, because of the complexity and varieties of spatial relations, only those factors of interest to us are selected. In order to find out the comprehensive knowledge from spatial databases, an efficient comprehensive knowledge discovery algorithm called recycled algorithm (RAR) is suggested. 展开更多
关键词 comprehensive knowledge discovery knowledge discovery algorithm spatialassociation rule knowledge expression system data mining
下载PDF
Taxpayers Fraudulent Behavior Modeling The Use of Datamining in Fiscal Fraud Detecting Moroccan Case
13
作者 Farid Ameur Mohamed Tkiouat 《Applied Mathematics》 2012年第10期1207-1213,共7页
The fraudulent behavior of taxpayers impacts negatively the resources available to finance public services. It creates distortions of competition and inequality, harming honest taxpayers. Such behavior requires the go... The fraudulent behavior of taxpayers impacts negatively the resources available to finance public services. It creates distortions of competition and inequality, harming honest taxpayers. Such behavior requires the government intervention to bring order and establish a fiscal justice. This study emphasizes the determination of the interactions linking taxpayers with tax authorities. We try to see how fiscal audit can influence taxpayers’ fraudulent behavior. First of all, we present a theoretical study of a model pre established by other authors. We have released some conditions of this model and we have introduced a new parameter reflecting the efficiency of tax control;we found that the efficiency of a fiscal control have an important effect on these interactions. Basing on the fact that the detection of fraudulent taxpayers is the most difficult step in fiscal control, We established a new approach using DATA MINING process in order to improve fiscal control efficiency. We found results that reflect fairly the conduct of taxpayers that we have tested based on actual statistics. The results are reliable. 展开更多
关键词 TAX FRAUD TAX EVASION data mining knowledge discovery in databases (KDD) FISCAL Policy FISCAL Reform FISCAL Control FISCAL Justice TAXPAYERS TAX Administration
下载PDF
Designing a Model to Study Data Mining in Distributed Environment
14
作者 Md. Abadur Rahman Masud Karim 《Journal of Data Analysis and Information Processing》 2021年第1期23-29,共7页
To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using d... To make business policy, market analysis, corporate decision, fraud detection, etc., we have to analyze and work with huge amount of data. Generally, such data are taken from different sources. Researchers are using data mining to perform such tasks. Data mining techniques are used to find hidden information from large data source. Data mining is using for various fields: Artificial intelligence, Bank, health and medical, corruption, legal issues, corporate business, marketing, etc. Special interest is given to associate rules, data mining algorithms, decision tree and distributed approach. Data is becoming larger and spreading geographically. So it is difficult to find better result from only a central data source. For knowledge discovery, we have to work with distributed database. On the other hand, security and privacy considerations are also another factor for de-motivation of working with centralized data. For this reason, distributed database is essential for future processing. In this paper, we have proposed a framework to study data mining in distributed environment. The paper presents a framework to bring out actionable knowledge. We have shown some level by which we can generate actionable knowledge. Possible tools and technique for these levels are discussed. 展开更多
关键词 data mining Distributed database knowledge discovery Classification Algorithm
下载PDF
An Experimental Analysis of the Applications of Datamining Methods on Bigdata
15
作者 CH.Naga Santhosh Kumar K.S.Reddy 《Journal of Autonomous Intelligence》 2019年第3期31-39,共9页
Data mining is a procedure of separating covered up,obscure,however possibly valuable data from gigantic data.Huge Data impactsly affects logical disclosures and worth creation.Data mining(DM)with Big Data has been br... Data mining is a procedure of separating covered up,obscure,however possibly valuable data from gigantic data.Huge Data impactsly affects logical disclosures and worth creation.Data mining(DM)with Big Data has been broadly utilized in the lifecycle of electronic items that range from the structure and generation stages to the administration organize.A far reaching examination of DM with Big Data and a survey of its application in the phases of its lifecycle won't just profit scientists to create solid research.As of late huge data have turned into a trendy expression,which constrained the analysts to extend the current data mining methods to adapt to the advanced idea of data and to grow new scientific procedures.In this paper,we build up an exact assessment technique dependent on the standard of Design of Experiment.We apply this technique to assess data mining instruments and AI calculations towards structure huge data examination for media transmission checking data.Two contextual investigations are directed to give bits of knowledge of relations between the necessities of data examination and the decision of an instrument or calculation with regards to data investigation work processes. 展开更多
关键词 data mining Big data knowledge discovery databases Decision Tree Cloud data mining K-Closest Neighbor Artificial Intelligence CLUSTER
下载PDF
Spatial data mining and visualization based on self-organizing map
16
作者 LIU Shu-ying OUYANG Hong-ji PENG Fang 《通讯和计算机(中英文版)》 2008年第12期55-60,共6页
关键词 空间数据分析 数据挖掘 可视化系统 分析方法
下载PDF
基于RoughSet的医疗数据挖掘应用分析 被引量:2
17
作者 刘幺和 吴佩 谭保华 《湖北工业大学学报》 2008年第2期68-70,共3页
从病历样本数据出发,运用基于区分矩阵的计算方法,简化了计算过程,使得医疗信息的处理更为简便有效,从中得出的简明直接、易于理解的产生式分类规则也具有一定的参考价值.
关键词 粗糙集 医学数据挖掘 知识发现
下载PDF
An Overview of Data Mining and Knowledge Discovery 被引量:8
18
作者 范建华 李德毅 《Journal of Computer Science & Technology》 SCIE EI CSCD 1998年第4期348-368,共21页
With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data ... With massive amounts of data stored in databases, mining information and knowledge in databases has become an important issue in recent research. Researchers in many different fields have shown great interest in data mining and knowledge discovery in databases. Several emerging applications in information providing services, such as data warehousing and on-line services over the Internet, also call for various data mining and knowledge discovery techniques to understand user behavior better, to improve the service provided, and to increase the business opportunities. In response to such a demand, this article is to provide a comprehensive survey on the data mining and knowledge discovery techniques developed recently, and introduce some real application systems as well. In conclusion, this article also lists some problems and challenges for further research. 展开更多
关键词 knowledge discovery in databases data mining machine learning association rule CLASSIFICATION data clustering data generalization pattern searching
原文传递
An efficient algorithm for mining closed itemsets 被引量:1
19
作者 刘君强 潘云鹤 《Journal of Zhejiang University Science》 CSCD 2004年第1期8-15,共8页
This paper presents a new efficient algorithm for mining frequent closed itemsets. It enumerates the closed set of frequent itemsets by using a novel compound frequent itemset tree that facilitates fast growth and eff... This paper presents a new efficient algorithm for mining frequent closed itemsets. It enumerates the closed set of frequent itemsets by using a novel compound frequent itemset tree that facilitates fast growth and efficient pruning of search space. It also employs a hybrid approach that adapts search strategies, representations of projected transaction subsets, and projecting methods to the characteristics of the dataset. Efficient local pruning, global subsumption checking, and fast hashing methods are detailed in this paper. The principle that balances the overheads of search space growth and pruning is also discussed. Extensive experimental evaluations on real world and artificial datasets showed that our algorithm outperforms CHARM by a factor of five and is one to three orders of magnitude more efficient than CLOSET and MAFIA. 展开更多
关键词 knowledge discovery data mining Frequent closed patterns Association rules
下载PDF
Financial Data Modeling by Using Asynchronous Parallel Evolutionary Algorithms
20
作者 Wang Chun, Li Qiao-yunSchool of Business, Huazhong University of Science and Technology , Wuhan 4300741 Hubei ChinaNetwork and Software Technology Center of America, Sony Corporation San Jose, CA, USA 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期239-242,共4页
In this paper, the high-level knowledge of financial data modeled by ordinary differential equations (ODEs) is discovered in dynamic data by using an asynchronous parallel evolutionary modeling algorithm (APHEMA). A n... In this paper, the high-level knowledge of financial data modeled by ordinary differential equations (ODEs) is discovered in dynamic data by using an asynchronous parallel evolutionary modeling algorithm (APHEMA). A numerical example of Nasdaq index analysis is used to demonstrate the potential of APHEMA. The results show that the dynamic models automatically discovered in dynamic data by computer can be used to predict the financial trends. 展开更多
关键词 financial data mining asynchronous parallel algorithm knowledge discovery evolutionary modeling
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部