A series of experimental tests of passive VIV suppression of an inclined flexible cylinder with round-sectioned helical strakes were carried out in a towing tank. During the tests, the cylinder models fitted with and ...A series of experimental tests of passive VIV suppression of an inclined flexible cylinder with round-sectioned helical strakes were carried out in a towing tank. During the tests, the cylinder models fitted with and without helical strakes were towed along the tank. The towing velocity ranged from 0.05 to 1.0 m/s with an interval of 0.05 m/s.Four different yaw angles(a=0°, 15°, 30° and 45°), defined as the angle between the axis of the cylinder and the plane orthogonal of the oncoming flow, were selected in the experiment. The main purpose of present experimental work is to further investigate the VIV suppression effectiveness of round-sectioned helical strakes on the inclined flexible cylinder. The VIV responses of the smooth cylinder and the cylinder with square-sectioned strakes under the same experimental condition were also presented for comparison. The experimental results indicated that the roundsectioned strake basically had a similar effect on VIV suppression compared with the square-sectioned one, and both can significantly reduce the VIV of the vertical cylinder which corresponded to the case of a=0°. But with the increase of yaw angle, the VIV suppression effectiveness of both round-and square-section strakes deteriorated dramatically, the staked cylinder even had a much stronger vibration than the smooth one did in the in-line(IL)direction.展开更多
In a round-oval-round pass rolling sequence, the cross-section profile of an outgoing workpiece was predicted first after getting the maximum spread. The concept "critical point on the contact boundary" was proposed...In a round-oval-round pass rolling sequence, the cross-section profile of an outgoing workpiece was predicted first after getting the maximum spread. The concept "critical point on the contact boundary" was proposed and the coordinates of the critical point were solved. The equivalent contact section area was represented and the mean roll radius was determined. The validity of this model was examined by alloy bar rolling experiment and rigid-plastic FEM simulation. Compared with the existing models, the mean roll radius obtained by this model is similar to experiment data.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51479135 and 51679167)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51621092)
文摘A series of experimental tests of passive VIV suppression of an inclined flexible cylinder with round-sectioned helical strakes were carried out in a towing tank. During the tests, the cylinder models fitted with and without helical strakes were towed along the tank. The towing velocity ranged from 0.05 to 1.0 m/s with an interval of 0.05 m/s.Four different yaw angles(a=0°, 15°, 30° and 45°), defined as the angle between the axis of the cylinder and the plane orthogonal of the oncoming flow, were selected in the experiment. The main purpose of present experimental work is to further investigate the VIV suppression effectiveness of round-sectioned helical strakes on the inclined flexible cylinder. The VIV responses of the smooth cylinder and the cylinder with square-sectioned strakes under the same experimental condition were also presented for comparison. The experimental results indicated that the roundsectioned strake basically had a similar effect on VIV suppression compared with the square-sectioned one, and both can significantly reduce the VIV of the vertical cylinder which corresponded to the case of a=0°. But with the increase of yaw angle, the VIV suppression effectiveness of both round-and square-section strakes deteriorated dramatically, the staked cylinder even had a much stronger vibration than the smooth one did in the in-line(IL)direction.
文摘In a round-oval-round pass rolling sequence, the cross-section profile of an outgoing workpiece was predicted first after getting the maximum spread. The concept "critical point on the contact boundary" was proposed and the coordinates of the critical point were solved. The equivalent contact section area was represented and the mean roll radius was determined. The validity of this model was examined by alloy bar rolling experiment and rigid-plastic FEM simulation. Compared with the existing models, the mean roll radius obtained by this model is similar to experiment data.