Objective To develop a technique for simultaneous detection of various target genes in Roundup Ready soybean by combining multiplex PCR and low-density DNA microarray. Methods Two sets of the multiplex PCR system were...Objective To develop a technique for simultaneous detection of various target genes in Roundup Ready soybean by combining multiplex PCR and low-density DNA microarray. Methods Two sets of the multiplex PCR system were used to amplify the target genes in genetically modified (GM) soybean. Seventeen capture probes (PCR products) and 17 pairs of corresponding primers were designed according to the genetic characteristics of Rroundup Ready soybean (GTS40-3-2), maize (MonS10, Nk603, GA21), canola (T45, MS1/RF1), and rice (SCK) in many identified GM crops. All of the probes were categorized and identified as species-specific probes. One negative probe and one positive control probe were used to assess the efficiency of all reactions, and therefore eliminate any false positive and negative results. After multiplex PCR reaction, amplicons were adulterated with Cy5-dUTP and hybridized with DNA microarray. The array was then scanned to display the specific hybridization signals of target genes. The assay was applied to the analysis of sample of certified transgenic soybean (Roundup Ready GTS40-3-2) and canola (MS1/RF1). Results A combination technique of multiplex PCR and DNA microarray was successfully developed to identify multi-target genes in Roundup Ready soybean and MS 1/RF1 canola with a great specificity and reliability. Reliable identification of genetic characteristics of Roundup Ready of GM soybean from genetically modified crops was achieved at 0.5% transgenic events, indicating a high sensitivity. Conclusion A combination technique of multiplex PCR and low-density DNA microarray can reliably detect and identify the genetically modified crops.展开更多
为了建立转基因大豆检测技术,采用巢式PCR和SYBR Green Ⅰ实时PCR技术,检测转基因大豆外源基因(CaMV35S、CP4EPSPS)。结果表明,利用巢式PCR可检测出1 ng/μL转基因含量1%的大豆中的CaMV35S基因,而第一轮PCR的检测限为100 ng/μL;利用SYB...为了建立转基因大豆检测技术,采用巢式PCR和SYBR Green Ⅰ实时PCR技术,检测转基因大豆外源基因(CaMV35S、CP4EPSPS)。结果表明,利用巢式PCR可检测出1 ng/μL转基因含量1%的大豆中的CaMV35S基因,而第一轮PCR的检测限为100 ng/μL;利用SYBR Green Ⅰ染料能结合双链DNA的特点,应用实时PCR技术可检测到CaMV35S、CP4EPSPS基因扩增所产生的信号,通过扩增产物的熔解曲线能有效地区分特异性产物,CaMV35S基因的检测限为0.1 ng/μL。同时利用该方法对黄豆、炒黄豆、豆干等样品进行检测,样品中未检出CaMV35S基因成分。巢式PCR方法明显提高了PCR的检测限,SYBR Green Ⅰ实时荧光PCR方法能有效、快速检测CaMV35S转基因成分。展开更多
基金National Basic Research Program of China (No. 2001CB109001)National High-Tech Research Program of China (No. 2002AA212041)
文摘Objective To develop a technique for simultaneous detection of various target genes in Roundup Ready soybean by combining multiplex PCR and low-density DNA microarray. Methods Two sets of the multiplex PCR system were used to amplify the target genes in genetically modified (GM) soybean. Seventeen capture probes (PCR products) and 17 pairs of corresponding primers were designed according to the genetic characteristics of Rroundup Ready soybean (GTS40-3-2), maize (MonS10, Nk603, GA21), canola (T45, MS1/RF1), and rice (SCK) in many identified GM crops. All of the probes were categorized and identified as species-specific probes. One negative probe and one positive control probe were used to assess the efficiency of all reactions, and therefore eliminate any false positive and negative results. After multiplex PCR reaction, amplicons were adulterated with Cy5-dUTP and hybridized with DNA microarray. The array was then scanned to display the specific hybridization signals of target genes. The assay was applied to the analysis of sample of certified transgenic soybean (Roundup Ready GTS40-3-2) and canola (MS1/RF1). Results A combination technique of multiplex PCR and DNA microarray was successfully developed to identify multi-target genes in Roundup Ready soybean and MS 1/RF1 canola with a great specificity and reliability. Reliable identification of genetic characteristics of Roundup Ready of GM soybean from genetically modified crops was achieved at 0.5% transgenic events, indicating a high sensitivity. Conclusion A combination technique of multiplex PCR and low-density DNA microarray can reliably detect and identify the genetically modified crops.
文摘为了建立转基因大豆检测技术,采用巢式PCR和SYBR Green Ⅰ实时PCR技术,检测转基因大豆外源基因(CaMV35S、CP4EPSPS)。结果表明,利用巢式PCR可检测出1 ng/μL转基因含量1%的大豆中的CaMV35S基因,而第一轮PCR的检测限为100 ng/μL;利用SYBR Green Ⅰ染料能结合双链DNA的特点,应用实时PCR技术可检测到CaMV35S、CP4EPSPS基因扩增所产生的信号,通过扩增产物的熔解曲线能有效地区分特异性产物,CaMV35S基因的检测限为0.1 ng/μL。同时利用该方法对黄豆、炒黄豆、豆干等样品进行检测,样品中未检出CaMV35S基因成分。巢式PCR方法明显提高了PCR的检测限,SYBR Green Ⅰ实时荧光PCR方法能有效、快速检测CaMV35S转基因成分。