Internet real-time multimedia communication brings a further challenge to Quality of Service(QoS).A higher QoS in communication is required increasingly.As a new framework for providing QoS services,Differentiated Ser...Internet real-time multimedia communication brings a further challenge to Quality of Service(QoS).A higher QoS in communication is required increasingly.As a new framework for providing QoS services,Differentiated Services (DiffServ)is undergoing a speedily standardization process at the IETF.DiffServ not only can offer classified level of services,but also can provide guaranteed QoS in a certain extent.In order to provide QoS,DiffServ must be properly configured.The traditional DiffServ mechanism provides classifier for edge router to mark the different traffic streams,and then the core router uses different Drop Packet Mechanisms to drop packets or transmit data packets according to these classified markers.When multiple edge routers or other core routers transmit data packets high speedily to a single core router,the core router will emerge bottleneck bandwidth.The most valid solution to this problem is that the edge router adopts drop packet mechanism.This paper proposes an Modified Edge Router Mechanism that let the edge router achieve marking,dropping and transmitting packets of hybrid traffic streams based on DiffServ in a given bandwidth,the core router will only transmits packets but won’t drop packets.By the simulation of ns2,the modified mechanism ensure the QoS of high priority traffics and simplify the core router,it is a valid method to solve the congestion of the core router.展开更多
A Single-Buffered (SB) router is a router where only one stage of shared buffering is sandwiched between two interconnects in comparison of a Combined Input and Output Queued (CIOQ) router where a central switch f...A Single-Buffered (SB) router is a router where only one stage of shared buffering is sandwiched between two interconnects in comparison of a Combined Input and Output Queued (CIOQ) router where a central switch fabric is sandwiched between two stages of buffering. The notion of SB routers was firstly proposed by the High-Performance Networking Group (HPNG) of Stanford University, along with two promising designs of SB routers: one of which was Parallel Shared Memory (PSM) router and the other was Distributed Shared Memory (DSM) router. Admittedly, the work of HPNG deserved full credit, but all results presented by them appeared to relay on a Centralized Memory Management Algorithm (CMMA) which was essentially impractical because of the high processing and communication complexity. This paper attempts to make a scalable high-speed SB router completely practical by introducing a fully distributed architecture for managing the shared memory of SB routers. The resulting SB router is called as a Virtual Output and Input Queued (VOIQ) router. Furthermore, the scheme of VOIQ routers can not only eliminate the need for the CMMA scheduler, thus allowing a fully distributed implementation with low processing and commu- nication complexity, but also provide QoS guarantees and efficiently support variable-length packets in this paper. In particular, the results of performance testing and the hardware implementation of our VOIQ-based router (NDSC~ SR1880-TTM series) are illustrated at the end of this paper. The proposal of this paper is the first distributed scheme of how to design and implement SB routers publicized till now.展开更多
This paper presents a scheme to perform QoS management and assure network security by using the trusted-router based on the Trust Management System.In this trusted-router,every IP packet is forwarded and queued by its...This paper presents a scheme to perform QoS management and assure network security by using the trusted-router based on the Trust Management System.In this trusted-router,every IP packet is forwarded and queued by its trust value,which is the quantification of the network's expectation for this packet's and its owner's behavior in the network.We outline the algorithms to calculate the trust value of the trusted-router and the IP packet.We also introduce the trust-based QoS management algorithm and the deployment of the trusted-routers which carry out this algorithm.The simulation results show that the least trusted IP packets will be dropped to save resources for those highly trusted IP packets.This will ecourage all the elements in the network to keep a good trust record.展开更多
This paper studies the load-balancing algorithm and quality of service (QoS) control mechanism in a 320Gb/s switch system, which incorporates four packet-level parallel switch planes. Eight priorities for both unica...This paper studies the load-balancing algorithm and quality of service (QoS) control mechanism in a 320Gb/s switch system, which incorporates four packet-level parallel switch planes. Eight priorities for both unicast and multicast traffic are implemented, and the highest priority with strict QoS guarantee is designed for real-time traffic. Through performance analysis under multi-prlorlty burst traffic, we demonstrate that the load-balancing algorithm is efficient, and the switch system not only provides excellent performance to real-time traffic, but also efficiently allocates bandwidth among other traffic of lower priorities. As a result, this parallel switch system is more scalable towards next generation core routers with QoS guarantee, as well as ensures in-order delivery of IP packets.展开更多
This article shows the quality of services in a wireless swarm of drones that form an ad hoc network between them Fly Ad Hoc Networks(FANET).Each drone has the ability to send and receive information(like a router);an...This article shows the quality of services in a wireless swarm of drones that form an ad hoc network between them Fly Ad Hoc Networks(FANET).Each drone has the ability to send and receive information(like a router);and can behave as a hierarchical node whit the intregration of three protocols:Multiprotocol Label Switch(MPLS),Fast Hierarchical AD Hoc Mobile(FHAM)and Internet Protocol version 6(IPv6),in conclusion MPLS+FHAM+IPv6.The metrics analyzed in the FANET are:delay,jitter,throughput,lost and sent packets/received.Testing process was carried out with swarms composed of 10,20,30 and 40 units;In this work,the stage with 40 droneswas analyzed showing registration processes,and sentmessages sequences between different drones that were part of the same swarm.A special analysis about the traffic between drones(end-to-end)was carried out,as well as the possible security flaws in each drone and the current status and future trends in real services.Regarding future trends,in a real environment,we took as a starting point,metrics results obtained in the simulation(positive according to the obtained results).These results gave us a clear vision of how the network will behave in a real environment with the aim to carry out the experiment on a physical level in the near future.This work also shows the experience quality from the service quality metrics obtained through a mathematical model.This quality of experience model will allow us to use it objectively in the agricultural sector,which is a great interest area and is where we are working with drones.Finally in this article we show our advances for a business model applied to the aforementioned agricultural sector,as well as the data analysis and services available to the end customer.These services available to the end customer have been classified into a basic,medium,advanced and plus level.展开更多
基金supported by the National Natural Science Foundation of China:(No60572093)the Specialized Research Fund for the Doctoral Program of Higher Education(No20050004016)NSFC-KOSEF Joint Research Project of China and Korea,and the CDSN,GIST
文摘Internet real-time multimedia communication brings a further challenge to Quality of Service(QoS).A higher QoS in communication is required increasingly.As a new framework for providing QoS services,Differentiated Services (DiffServ)is undergoing a speedily standardization process at the IETF.DiffServ not only can offer classified level of services,but also can provide guaranteed QoS in a certain extent.In order to provide QoS,DiffServ must be properly configured.The traditional DiffServ mechanism provides classifier for edge router to mark the different traffic streams,and then the core router uses different Drop Packet Mechanisms to drop packets or transmit data packets according to these classified markers.When multiple edge routers or other core routers transmit data packets high speedily to a single core router,the core router will emerge bottleneck bandwidth.The most valid solution to this problem is that the edge router adopts drop packet mechanism.This paper proposes an Modified Edge Router Mechanism that let the edge router achieve marking,dropping and transmitting packets of hybrid traffic streams based on DiffServ in a given bandwidth,the core router will only transmits packets but won’t drop packets.By the simulation of ns2,the modified mechanism ensure the QoS of high priority traffics and simplify the core router,it is a valid method to solve the congestion of the core router.
基金the National High-Tech Research and De-velopment Program of China (863 Program) (2003AA103510, 2004AA103130, 2005AA121210).
文摘A Single-Buffered (SB) router is a router where only one stage of shared buffering is sandwiched between two interconnects in comparison of a Combined Input and Output Queued (CIOQ) router where a central switch fabric is sandwiched between two stages of buffering. The notion of SB routers was firstly proposed by the High-Performance Networking Group (HPNG) of Stanford University, along with two promising designs of SB routers: one of which was Parallel Shared Memory (PSM) router and the other was Distributed Shared Memory (DSM) router. Admittedly, the work of HPNG deserved full credit, but all results presented by them appeared to relay on a Centralized Memory Management Algorithm (CMMA) which was essentially impractical because of the high processing and communication complexity. This paper attempts to make a scalable high-speed SB router completely practical by introducing a fully distributed architecture for managing the shared memory of SB routers. The resulting SB router is called as a Virtual Output and Input Queued (VOIQ) router. Furthermore, the scheme of VOIQ routers can not only eliminate the need for the CMMA scheduler, thus allowing a fully distributed implementation with low processing and commu- nication complexity, but also provide QoS guarantees and efficiently support variable-length packets in this paper. In particular, the results of performance testing and the hardware implementation of our VOIQ-based router (NDSC~ SR1880-TTM series) are illustrated at the end of this paper. The proposal of this paper is the first distributed scheme of how to design and implement SB routers publicized till now.
基金supported by National Key Basic Research Program of China(973 Program)under Grant No.2007CB310704National Natural Science Foundation of China under Grant No.90718001,60973146
文摘This paper presents a scheme to perform QoS management and assure network security by using the trusted-router based on the Trust Management System.In this trusted-router,every IP packet is forwarded and queued by its trust value,which is the quantification of the network's expectation for this packet's and its owner's behavior in the network.We outline the algorithms to calculate the trust value of the trusted-router and the IP packet.We also introduce the trust-based QoS management algorithm and the deployment of the trusted-routers which carry out this algorithm.The simulation results show that the least trusted IP packets will be dropped to save resources for those highly trusted IP packets.This will ecourage all the elements in the network to keep a good trust record.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 60573121 and 60373007, the China/Ireland Science and Technology Collaboration Research Fund (CI-2003-02), the National Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20040003048).
文摘This paper studies the load-balancing algorithm and quality of service (QoS) control mechanism in a 320Gb/s switch system, which incorporates four packet-level parallel switch planes. Eight priorities for both unicast and multicast traffic are implemented, and the highest priority with strict QoS guarantee is designed for real-time traffic. Through performance analysis under multi-prlorlty burst traffic, we demonstrate that the load-balancing algorithm is efficient, and the switch system not only provides excellent performance to real-time traffic, but also efficiently allocates bandwidth among other traffic of lower priorities. As a result, this parallel switch system is more scalable towards next generation core routers with QoS guarantee, as well as ensures in-order delivery of IP packets.
基金This research has been funded by Dirección General de Investigaciones of Universidad Santiago de Cali under Call No.01-2021.
文摘This article shows the quality of services in a wireless swarm of drones that form an ad hoc network between them Fly Ad Hoc Networks(FANET).Each drone has the ability to send and receive information(like a router);and can behave as a hierarchical node whit the intregration of three protocols:Multiprotocol Label Switch(MPLS),Fast Hierarchical AD Hoc Mobile(FHAM)and Internet Protocol version 6(IPv6),in conclusion MPLS+FHAM+IPv6.The metrics analyzed in the FANET are:delay,jitter,throughput,lost and sent packets/received.Testing process was carried out with swarms composed of 10,20,30 and 40 units;In this work,the stage with 40 droneswas analyzed showing registration processes,and sentmessages sequences between different drones that were part of the same swarm.A special analysis about the traffic between drones(end-to-end)was carried out,as well as the possible security flaws in each drone and the current status and future trends in real services.Regarding future trends,in a real environment,we took as a starting point,metrics results obtained in the simulation(positive according to the obtained results).These results gave us a clear vision of how the network will behave in a real environment with the aim to carry out the experiment on a physical level in the near future.This work also shows the experience quality from the service quality metrics obtained through a mathematical model.This quality of experience model will allow us to use it objectively in the agricultural sector,which is a great interest area and is where we are working with drones.Finally in this article we show our advances for a business model applied to the aforementioned agricultural sector,as well as the data analysis and services available to the end customer.These services available to the end customer have been classified into a basic,medium,advanced and plus level.