A new method for submarine pipeline routing risk quantitative analysis was provided, and the study was developed from qualitative analysis to quantitative analysis.The characteristics of the potential risk of the subm...A new method for submarine pipeline routing risk quantitative analysis was provided, and the study was developed from qualitative analysis to quantitative analysis.The characteristics of the potential risk of the submarine pipeline system were considered, and grey-mode identification theory was used. The study process was composed of three parts: establishing the indexes system of routing risk quantitative analysis, establishing the model of grey-mode identification for routing risk quantitative analysis, and establishing the standard of mode identification result. It is shown that this model can directly and concisely reflect the hazard degree of the routing through computing example, and prepares the routing selection for the future.展开更多
Previous studies show that interconnects occupy a large portion of the timing budget and area in FPGAs.In this work,we propose a time-multiplexing technique on FPGA interconnects.In order to fully exploit this interco...Previous studies show that interconnects occupy a large portion of the timing budget and area in FPGAs.In this work,we propose a time-multiplexing technique on FPGA interconnects.In order to fully exploit this interconnect architecture,we propose a time-multiplexed routing algorithm that can actively identify qualified nets and schedule them to multiplexable wires.We validate the algorithm by using the router to implement 20 benchmark circuits to time-multiplexed FPGAs.We achieve a 38%smaller minimum channel width and 3.8%smaller circuit critical path delay compared with the state-of-the-art architecture router when a wire can be time-multiplexed six times in a cycle.展开更多
Geospatial technology is a useful tool when identifying land corridors for transportation networks. The primary transit corridor between Los Angeles, CA and Las Vegas, NV is Interstate-15, approximately a four-hour au...Geospatial technology is a useful tool when identifying land corridors for transportation networks. The primary transit corridor between Los Angeles, CA and Las Vegas, NV is Interstate-15, approximately a four-hour automobile trip without traffic. Virgin Trains USA LLC proposes an alternative means of travel by constructing a high-speed railway along Interstate-15 connecting Las Vegas and Victorville, CA. This study uses least-cost path analysis to propose an optimized alternative corridor for Virgin Trains’ proposed high-speed railway through a system facilitated road and rail accessibility analysis. Previous research using least-cost path and accessibility methodologies evaluated the results of proposed high-speed railway corridors and the system facilitated accessibility changes by visually inspecting deviations from a planned corridor using single or multiple cost criteria as inputs for a weighted cost surface. However, robust analyses of previous least-cost path studies’ corridors are lacking. This proof-in-concept study proposes a less costly corridor through least-cost path analysis and measures the social impact on the stakeholders of a high-speed railway transportation system through system facilitated accessibility. This study’s proposed alternative corridor is 31% shorter than Virgin Trains’ planned corridor and system facilitated accessibility to Las Vegas, NV is increased in 99.74% of Los Angeles County’s census tracts. These results support this study’s position that geospatial technology can support transportation planning in a comprehensive method that considers the transportation corridor and benefits its stakeholders.展开更多
The optimal evacuation scheme is studied based on the dam-break flood numerical simulation. A three- dimensional dam-break mathematical model combined with the volume of fluid (VOF) method is adopted. According to t...The optimal evacuation scheme is studied based on the dam-break flood numerical simulation. A three- dimensional dam-break mathematical model combined with the volume of fluid (VOF) method is adopted. According to the hydraulic information obtained from numerical simulation and selecting principles of evacuation emergency scheme, evacuation route analysis model is proposed, which consists of the road right model and random degree model. The road right model is used to calculate the consumption time in roads, and the random degree model is used to judge whether the roads are blocked. Then the shortest evacuation route is obtained based on Dijstra algorithm. Gongming Reservoir located in Shenzhen is taken as a case to study. The results show that industrial area I is flooded at 2 500 s, and after 5 500 s, most of industrial area II is submerged. The Hushan, Loucun Forest and Chaishan are not flooded around industrial area I and II. Based on the above analysis, the optimal evacuation scheme is determined.展开更多
Extensive investigation has been performed in location-centric or geocast routing protocols for reliable and efficient dissemination of information in Vehicular Adhoc Networks (VANETs). Various location-centric rout...Extensive investigation has been performed in location-centric or geocast routing protocols for reliable and efficient dissemination of information in Vehicular Adhoc Networks (VANETs). Various location-centric routing protocols have been suggested in literature for road safety ITS applications considering urban and highway traffic environment. This paper characterizes vehicular environments based on real traffic data and investigates the evolution of location-centric data dissemination. The current study is carded out with three main objectives: (i) to analyze the impact of dynamic traffic environment on the design of data dissemination techniques, (ii) to characterize location-centric data dissemination in terms of functional and qualitative behavior of protocols, properties, and strengths and weaknesses, and (iii) to find some future research directions in information dissemination based on location. Vehicular traffic environments have been classified into three categories based on physical characteristics such as speed, inter-vehicular distance, neighborhood stability, traffic volume, etc. Real traffic data is considered to analyze on-road traffic environments based on the measurement of physical parameters and weather conditions. Design issues are identified in incorporating physical parameters and weather conditions into data dissemination. Functional and qualitative characteristics of location-centric techniques are explored considering urban and highway environments. Comparative analysis of location-centric techniques is carded out for both urban and highway environments individually based on some unique and common characteristics of the environments. Finally, some future research directions are identified in the area based on the detailed investigation of traffic environments and location-centric data dissemination techniques.展开更多
In this study, single and interactive effect of three parameters, pH, ferrous and pulp concentration has been investigated by a 2^3 full factorial CCRD (central composite rotatable design) composed of eight factoria...In this study, single and interactive effect of three parameters, pH, ferrous and pulp concentration has been investigated by a 2^3 full factorial CCRD (central composite rotatable design) composed of eight factorial points, six central and six axial points. Initially, "none" mode from transformation subsection was chosen as the default choice for both responses, i.e. %recovery and gram of recovered zinc. Box-Cox plots give the best Lambda for each response (y^Lambda= f (A, B, C .....)) which occur at 1.91 and 2.16 for %recovey and gram of recovered zinc, respectively. A linear (y^1.91 = f (linear)) and a quadratic (y^2. 16= f (quadratic)) equation were suggested by software as the model for %recovery and gram of recovered zinc, respectively. Analysis of variance (ANOVA) for both models shows a high coefficient of determination (R^2). In order to optimize and find the best conditions under which three parameters occur appropriately, optimization was done numerically. Desirability plots indicate properly that the best conditions occur at pH = 1.46, ferrous = 6.67 g/L, %pulp = 7.1 (%w/v), %recovery = 86.5, gram of recovered zinc = 0.63 g and desirability = 0.777. Finally, PRP (progressive route of the process) analysis donates us a proper insight of what is happening during these 30 days. PRP analysis categorizes flasks in two parts, 1- flasks worth economically, 2- flasks with one-time-usable feed materials.展开更多
The duality in China's traffic planning has given rise to the basic unit of urban form and function called the superblock,which is defined and bound by an arterial street network.The street network of China's ...The duality in China's traffic planning has given rise to the basic unit of urban form and function called the superblock,which is defined and bound by an arterial street network.The street network of China's superblock un derpins the coexiste nee and in teraction of global and local movement,the public and daily space,and affects place diversity and local characteristics.However,its configuration remains to be articulated because of the lack of a systematic representation method,and the associations between configuration and performance,cognition and design cannot be determi ned.This study proposes an improved representation method for the street network of China's superblocks based on Marshall's route structure analysis to explore the configurational characteristics and sustainability of the network.To fit local conditions,this study improves Marshall's route structure analysis from four perspectives,namely,the judgement of relative hierarchy,the node construction principle,and the deletion and addition of the original indicators.The improved method is then applied to calculate and compare the depth,connectivity,and complexity of the street networks of 10 sample superblocks in Nanjing,which are classified into six types by construction backgrounds,each having two seenarios differing by the level of publicity.Results indicate that the types formed in accordance with the"The Capital Plan"of the Republic of China,which presents a combination of fine orthogonal grids and radiations,and by the renewal of the traditional street-andlane network,which has the"characteristic structure" defined by Marshall,perform best in terms of configurational sustainability.The an alysis also reveals that the addition of semipublic streets formed mainly from the bottom up narrows the sustainability gap among the samples.This study provides a tool for elaborate urban study and design and provides in sights into the cognitive and practical aspects of China's urban planning and design.展开更多
Due to limitations in geometric representation and semantic description, the current pedestrian route analysis models are inadequate. To express the geometry of geographic entities in a micro-spatial environment accur...Due to limitations in geometric representation and semantic description, the current pedestrian route analysis models are inadequate. To express the geometry of geographic entities in a micro-spatial environment accurately, the concept of a grid is presented, and grid-based methods for modeling geospatial objects are described. The semantic constitution of a building environment and the methods for modeling rooms, corridors, and staircases with grid objects are described. Based on the topology relationship between grid objects, a grid-based graph for a building environment is presented, and the corresponding route algorithm for pedestrians is proposed. The main advantages of the graph model proposed in this paper are as follows: 1) consideration of both semantic and geometric information, 2) consideration of the need for accurate geometric representation of the micro-spatial environment and the efficiency of pedestrian route analysis, 3) applicability of the graph model to route analysis in both static and dynamic environments, and 4) ability of the multi-hierarchical route analysis to integrate the multiple levels of pedestrian decision characteristics, from the high to the low, to determine the optimal path.展开更多
This paper describes the general optimization design method of Solar-Powered Unmanned Aerial Vehicle which priority considering propulsion system planning. Based on the traditional solar powered aircraft design method...This paper describes the general optimization design method of Solar-Powered Unmanned Aerial Vehicle which priority considering propulsion system planning. Based on the traditional solar powered aircraft design method, the propulsion system top-level target parameters which affect the path planning are integrated into the general optimization design. According to the typical mission requirements of Solar-Powered Unmanned Aerial Vehicle, considering the design variables such as wing area, aspect ratio, design mission date and so on, the general optimization is carried out with the minimum aircraft weight as the optimization objective. The influence of wing area and aspect ratio on the optimal design results is analyzed and compared with the traditional design method. The results show that the general design method of Solar-Powered Unmanned Aerial Vehicle for priority considering propulsion system can greatly reduce the electricity demand of energy storage battery, greatly reduce the aircraft weight of Solar-Powered Unmanned Aerial Vehicle.展开更多
文摘A new method for submarine pipeline routing risk quantitative analysis was provided, and the study was developed from qualitative analysis to quantitative analysis.The characteristics of the potential risk of the submarine pipeline system were considered, and grey-mode identification theory was used. The study process was composed of three parts: establishing the indexes system of routing risk quantitative analysis, establishing the model of grey-mode identification for routing risk quantitative analysis, and establishing the standard of mode identification result. It is shown that this model can directly and concisely reflect the hazard degree of the routing through computing example, and prepares the routing selection for the future.
文摘Previous studies show that interconnects occupy a large portion of the timing budget and area in FPGAs.In this work,we propose a time-multiplexing technique on FPGA interconnects.In order to fully exploit this interconnect architecture,we propose a time-multiplexed routing algorithm that can actively identify qualified nets and schedule them to multiplexable wires.We validate the algorithm by using the router to implement 20 benchmark circuits to time-multiplexed FPGAs.We achieve a 38%smaller minimum channel width and 3.8%smaller circuit critical path delay compared with the state-of-the-art architecture router when a wire can be time-multiplexed six times in a cycle.
文摘Geospatial technology is a useful tool when identifying land corridors for transportation networks. The primary transit corridor between Los Angeles, CA and Las Vegas, NV is Interstate-15, approximately a four-hour automobile trip without traffic. Virgin Trains USA LLC proposes an alternative means of travel by constructing a high-speed railway along Interstate-15 connecting Las Vegas and Victorville, CA. This study uses least-cost path analysis to propose an optimized alternative corridor for Virgin Trains’ proposed high-speed railway through a system facilitated road and rail accessibility analysis. Previous research using least-cost path and accessibility methodologies evaluated the results of proposed high-speed railway corridors and the system facilitated accessibility changes by visually inspecting deviations from a planned corridor using single or multiple cost criteria as inputs for a weighted cost surface. However, robust analyses of previous least-cost path studies’ corridors are lacking. This proof-in-concept study proposes a less costly corridor through least-cost path analysis and measures the social impact on the stakeholders of a high-speed railway transportation system through system facilitated accessibility. This study’s proposed alternative corridor is 31% shorter than Virgin Trains’ planned corridor and system facilitated accessibility to Las Vegas, NV is increased in 99.74% of Los Angeles County’s census tracts. These results support this study’s position that geospatial technology can support transportation planning in a comprehensive method that considers the transportation corridor and benefits its stakeholders.
基金Supported by Natural Science Foundation of Tianjin (No.09JCYBJC08700)the Foundation for Innovative Research Groups of National Natural Science Foundation of China (No.51021004)National Natural Science Foundation of China (No.90815019)
文摘The optimal evacuation scheme is studied based on the dam-break flood numerical simulation. A three- dimensional dam-break mathematical model combined with the volume of fluid (VOF) method is adopted. According to the hydraulic information obtained from numerical simulation and selecting principles of evacuation emergency scheme, evacuation route analysis model is proposed, which consists of the road right model and random degree model. The road right model is used to calculate the consumption time in roads, and the random degree model is used to judge whether the roads are blocked. Then the shortest evacuation route is obtained based on Dijstra algorithm. Gongming Reservoir located in Shenzhen is taken as a case to study. The results show that industrial area I is flooded at 2 500 s, and after 5 500 s, most of industrial area II is submerged. The Hushan, Loucun Forest and Chaishan are not flooded around industrial area I and II. Based on the above analysis, the optimal evacuation scheme is determined.
文摘Extensive investigation has been performed in location-centric or geocast routing protocols for reliable and efficient dissemination of information in Vehicular Adhoc Networks (VANETs). Various location-centric routing protocols have been suggested in literature for road safety ITS applications considering urban and highway traffic environment. This paper characterizes vehicular environments based on real traffic data and investigates the evolution of location-centric data dissemination. The current study is carded out with three main objectives: (i) to analyze the impact of dynamic traffic environment on the design of data dissemination techniques, (ii) to characterize location-centric data dissemination in terms of functional and qualitative behavior of protocols, properties, and strengths and weaknesses, and (iii) to find some future research directions in information dissemination based on location. Vehicular traffic environments have been classified into three categories based on physical characteristics such as speed, inter-vehicular distance, neighborhood stability, traffic volume, etc. Real traffic data is considered to analyze on-road traffic environments based on the measurement of physical parameters and weather conditions. Design issues are identified in incorporating physical parameters and weather conditions into data dissemination. Functional and qualitative characteristics of location-centric techniques are explored considering urban and highway environments. Comparative analysis of location-centric techniques is carded out for both urban and highway environments individually based on some unique and common characteristics of the environments. Finally, some future research directions are identified in the area based on the detailed investigation of traffic environments and location-centric data dissemination techniques.
文摘In this study, single and interactive effect of three parameters, pH, ferrous and pulp concentration has been investigated by a 2^3 full factorial CCRD (central composite rotatable design) composed of eight factorial points, six central and six axial points. Initially, "none" mode from transformation subsection was chosen as the default choice for both responses, i.e. %recovery and gram of recovered zinc. Box-Cox plots give the best Lambda for each response (y^Lambda= f (A, B, C .....)) which occur at 1.91 and 2.16 for %recovey and gram of recovered zinc, respectively. A linear (y^1.91 = f (linear)) and a quadratic (y^2. 16= f (quadratic)) equation were suggested by software as the model for %recovery and gram of recovered zinc, respectively. Analysis of variance (ANOVA) for both models shows a high coefficient of determination (R^2). In order to optimize and find the best conditions under which three parameters occur appropriately, optimization was done numerically. Desirability plots indicate properly that the best conditions occur at pH = 1.46, ferrous = 6.67 g/L, %pulp = 7.1 (%w/v), %recovery = 86.5, gram of recovered zinc = 0.63 g and desirability = 0.777. Finally, PRP (progressive route of the process) analysis donates us a proper insight of what is happening during these 30 days. PRP analysis categorizes flasks in two parts, 1- flasks worth economically, 2- flasks with one-time-usable feed materials.
基金sponsored by the National Natural Science Foundation of China(NSFC#51578123)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYLX16_0234).
文摘The duality in China's traffic planning has given rise to the basic unit of urban form and function called the superblock,which is defined and bound by an arterial street network.The street network of China's superblock un derpins the coexiste nee and in teraction of global and local movement,the public and daily space,and affects place diversity and local characteristics.However,its configuration remains to be articulated because of the lack of a systematic representation method,and the associations between configuration and performance,cognition and design cannot be determi ned.This study proposes an improved representation method for the street network of China's superblocks based on Marshall's route structure analysis to explore the configurational characteristics and sustainability of the network.To fit local conditions,this study improves Marshall's route structure analysis from four perspectives,namely,the judgement of relative hierarchy,the node construction principle,and the deletion and addition of the original indicators.The improved method is then applied to calculate and compare the depth,connectivity,and complexity of the street networks of 10 sample superblocks in Nanjing,which are classified into six types by construction backgrounds,each having two seenarios differing by the level of publicity.Results indicate that the types formed in accordance with the"The Capital Plan"of the Republic of China,which presents a combination of fine orthogonal grids and radiations,and by the renewal of the traditional street-andlane network,which has the"characteristic structure" defined by Marshall,perform best in terms of configurational sustainability.The an alysis also reveals that the addition of semipublic streets formed mainly from the bottom up narrows the sustainability gap among the samples.This study provides a tool for elaborate urban study and design and provides in sights into the cognitive and practical aspects of China's urban planning and design.
基金supported by National Natural Science Foundation of China(Nos.41571387,41201375 and 41501440)Tianjin Research Program of Application Foundation and Advanced Technology(No.14JCQNJC07900)+1 种基金Tianjin Science and Technology Planning Project(Nos.15ZCZDSF00390 and 14TXGCCX00015)Opening Fund of Tianjin Engineering Research Center of Geospatial Information Technology"Modeling and analysis of path graph in 3D indoor spatial environment"
文摘Due to limitations in geometric representation and semantic description, the current pedestrian route analysis models are inadequate. To express the geometry of geographic entities in a micro-spatial environment accurately, the concept of a grid is presented, and grid-based methods for modeling geospatial objects are described. The semantic constitution of a building environment and the methods for modeling rooms, corridors, and staircases with grid objects are described. Based on the topology relationship between grid objects, a grid-based graph for a building environment is presented, and the corresponding route algorithm for pedestrians is proposed. The main advantages of the graph model proposed in this paper are as follows: 1) consideration of both semantic and geometric information, 2) consideration of the need for accurate geometric representation of the micro-spatial environment and the efficiency of pedestrian route analysis, 3) applicability of the graph model to route analysis in both static and dynamic environments, and 4) ability of the multi-hierarchical route analysis to integrate the multiple levels of pedestrian decision characteristics, from the high to the low, to determine the optimal path.
文摘This paper describes the general optimization design method of Solar-Powered Unmanned Aerial Vehicle which priority considering propulsion system planning. Based on the traditional solar powered aircraft design method, the propulsion system top-level target parameters which affect the path planning are integrated into the general optimization design. According to the typical mission requirements of Solar-Powered Unmanned Aerial Vehicle, considering the design variables such as wing area, aspect ratio, design mission date and so on, the general optimization is carried out with the minimum aircraft weight as the optimization objective. The influence of wing area and aspect ratio on the optimal design results is analyzed and compared with the traditional design method. The results show that the general design method of Solar-Powered Unmanned Aerial Vehicle for priority considering propulsion system can greatly reduce the electricity demand of energy storage battery, greatly reduce the aircraft weight of Solar-Powered Unmanned Aerial Vehicle.