With the development of satellite communication,in order to solve the problems of shortage of on-board resources and refinement of delay requirements to improve the communication performance of satellite optical netwo...With the development of satellite communication,in order to solve the problems of shortage of on-board resources and refinement of delay requirements to improve the communication performance of satellite optical networks,this paper proposes a bee colony optimization algorithm for routing and wavelength assignment based on directional guidance(DBCO-RWA)in satellite optical networks.In D-BCORWA,directional guidance based on relative position and link load is defined,and then the link cost function in the path search stage is established based on the directional guidance factor.Finally,feasible solutions are expanded in the global optimization stage.The wavelength utilization,communication success probability,blocking rate,communication hops and convergence characteristic are simulated.The results show that the performance of the proposed algorithm is improved compared with existing algorithms.展开更多
This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical ...This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.展开更多
In wavelength division multiplexing (WDM) networks without wavelengthconversion functionality, we convert the dynamic routing and wavelength assignment problem formulti-lightpath demands to the edge-disjoint paths pro...In wavelength division multiplexing (WDM) networks without wavelengthconversion functionality, we convert the dynamic routing and wavelength assignment problem formulti-lightpath demands to the edge-disjoint paths problem, and propose a new algorithm. Thecomputer simulations show that the proposed algorithm has better blocking probability performancethan a sequential algorithm, which first separates a multi-lightpath demand into mutilplesingle-lightpath demands, then uses the fixed-alternate routing-first fit wavelength assignment(AR-FF) algorithm for each single-lightpath demand.展开更多
Routing and wavelength assignment for online real-time multicast connection setup is a difficult task due to the dynamic change of availabilities of wavelengths on links and the consideration of wavelength conversion ...Routing and wavelength assignment for online real-time multicast connection setup is a difficult task due to the dynamic change of availabilities of wavelengths on links and the consideration of wavelength conversion delay in WDM networks. This paper presents a distributed routing and wavelength assignment scheme for the setup of real-time multicast connections. It integrates routing and wavelength assignment as a single process, which greatly reduces the connection setup time. The proposed routing method is based on the Prim’s MST (Minimum Spanning Tree) algorithm and the K-restricted breadth-first search method, which can produce a sub-minimal cost tree under a given delay bound. The wave-length assignment uses the least-conversion and load balancing strategies. Simulation results show that the proposed algorithm is suitable for online multicast connection establishment in WDM networks.展开更多
To solve the routing and wavelength assignment problem in the optical network, this paper put forward the metric model with sparse wavelength conversion and routing algorithm with pruning (RAP) in order to efficient...To solve the routing and wavelength assignment problem in the optical network, this paper put forward the metric model with sparse wavelength conversion and routing algorithm with pruning (RAP) in order to efficiently realize the resource management in the unified way. Related methods with dynamic and adaptation characters considered the link state conditions and certain heuristic information. They can be applied to current network environments. In particular, the simulation was made according to the selfsimilar traffic and the results showed that the corresponding methods not only provided service differentiation but also reduced the overall average blocking Drobabilitv.展开更多
In this paper, a Wavelength Division Multiplexing (WDM) network model based on the equivalent networks is described, and wavelength-dependent equivalent arc, equivalent networks, equivalent multicast tree and some oth...In this paper, a Wavelength Division Multiplexing (WDM) network model based on the equivalent networks is described, and wavelength-dependent equivalent arc, equivalent networks, equivalent multicast tree and some other terms are presented. Based on this model and relevant Routing and Wavelength Assign- ment (RWA) strategy, a unicast RWA algorithm and a multicast RWA algorithm are presented. The wave- length-dependent equivalent arc expresses the schedule of local RWA and the equivalent network expresses the whole topology of WDM optical networks, so the two algorithms are of the flexibility in RWA and the optimi- zation of the whole problem. The theoretic analysis and simulation results show the two algorithms are of the stronger capability and the lower complexity than the other existing algorithms for RWA problem, and the complexity of the two algorithms are only related to the scale of the equivalent networks. Finally, we prove the two algorithms’ feasibility and the one-by-one corresponding relation between the equivalent multicast tree and original multicast tree, and point out the superiorities and drawbacks of the two algorithms respectively.展开更多
In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is...In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is introduced which can improve robustness of the network. Above all,a cross-layer optimization model is designed,which considers transmission delay and wavelength-continuity constraint,as well as Doppler wavelength shift. Then CL-DRWA is applied to solve this model,resulting in finding an optimal light path satisfying the above constraints for every connection request. In CL-DRWA,Bellman-Ford method is used to find an optimal route and a distributed relative capacity loss method is implemented to get an optimal wavelength assignment result on the optimal route. Moreover,compared with the dynamic routing and wavelength assignment algorithm based on minimum delay strategy( MD-DRWA),CL-DRWA can make an improvement of 5. 3% on the communication success probability. Meanwhile,CL-DRWA can meet the requirement of transmission delay for real-time services.展开更多
With the rise of cloud computing in recent years, a large number of streaming media has yielded an exponential growth in network traffic. With the now present 5G and future 6G, the development of the Internet of Thing...With the rise of cloud computing in recent years, a large number of streaming media has yielded an exponential growth in network traffic. With the now present 5G and future 6G, the development of the Internet of Things (IoT), social networks, video on demand, and mobile multimedia platforms, the backbone network is bound to bear more traffic. The transmission capacity of Single Core Fiber (SCFs) may be limited in the future and Spatial Division Multiplexing (SDM) leveraging multi-core fibers promises to be one of the solutions for the future. Currently, Elastic optical networks (EONs) with multi-core fibers (MCFs) are a kind of SDM-enabled EONs (SDM-EON) used to enhance the capacity of transmission. The resource assignment in MCFs, however, will be subject to Inter-Core Crosstalk (IC-XT), hence, reducing the effectiveness of transmission. This research highlights the routing, modulation level, and spectrum assignment (RMLSA) problems with anycast traffic mode in SDM-EON. A multipath routing scheme is used to reduce the blocking rate of anycast traffic in SDM-EON with the limit of inter-core crosstalk. Hence, an integer linear programming (ILP) problem is formulated and a heuristic algorithm is proposed. Two core-assignment strategies: First-Fit (FF) and Random-Fit (RF) are used and their performance is evaluated through simulations. The simulation results show that the multipath routing method is better than the single-path routing method in terms of blocking ratio and spectrum utilization ratio. Moreover, the FF is better than the RF in low traffic load in terms of blocking ratio (BR), and the opposite in high traffic load. The FF is better than the RF in terms of a spectrum utilization ratio. In an anycast protection problem, the proposed algorithm has a lower BR than previous works.展开更多
After analyzing the merits and shortcomings of Fixed-Alternated Routing algorithm (FAR) and Least Loaded Routing algorithm (LLR),we propose one novel dynamic optical routing algorithm. Having considered the influences...After analyzing the merits and shortcomings of Fixed-Alternated Routing algorithm (FAR) and Least Loaded Routing algorithm (LLR),we propose one novel dynamic optical routing algorithm. Having considered the influences of path’s length and path’s congestion just like in FAR and LLR,we take into account the network resource status-amount of free wavelengths in the network. Proposed algorithm sets up connections on three possible paths according to amount of available free wave-lengths in the network,which effectively decreases the blocking probability. The National Science Foundation (NSF) network and mesh-torus network simulation results show that the performance of this algorithm is better than that of FAR and LLR.展开更多
Conventional optical burst switching(OBS)technique adopts purely statistical multiplex mechanismso that the bursts collide with each other very easily.To address this problem,a novel proactive con-tention avoidance sc...Conventional optical burst switching(OBS)technique adopts purely statistical multiplex mechanismso that the bursts collide with each other very easily.To address this problem,a novel proactive con-tention avoidance scheme is proposed,which assigns dedicated wavelengths to each ingress node,then st-numbering algorithm is used to construct the traffic load balanced spanning trees .In this way,contentioncan be eliminated at ingress nodes,and the amount of bursts that could be accommodated by ingressnodes will be maximized.Further,those unused wavelengths left by traffic load balanced spanning treeare also organized as partial trees to carry bursts,thus the link utilization can be improved effectively.Simulation result shows that our scheme can improve the burst loss performance significantly without thewavelength converters or optical buffers comparing to other popular routing and wavelength assignment(RWA)algorithms.展开更多
All-optical network,as a new backbone network,is featured with high speed and large capacity transmission.It may be out of order due to various faults while providing high-performance transmission service,thus more ef...All-optical network,as a new backbone network,is featured with high speed and large capacity transmission.It may be out of order due to various faults while providing high-performance transmission service,thus more effective fault repairing methods are required.A routing and wavelength assignment method based on SDN is designed and analyzed from the perspective of service function chaining in this paper.A multi-objective integer linear programming model based on impairment-aware and scheduling time is constructed by combining the unified control of control plane with the resource allocation mode of service function virtualization.Meanwhile,an improved Firefly Algorithm is adopted to solve the model for obtaining a better scheduling scheme,so as to the resources are allocated on-demand in a more flexible and efficient way,which effectively improved the self-recovery capability of the network.In the simulation experiments,Through the comparison between the method proposed and methods based on centralization and distribution,method proposed in the paper is superior to the compared ones in the indexes of survivability,blocking probability,link recovery time,and presents a better scheduling performance,makes the system has stronger ability of self-healing in the face of failure.展开更多
This paper presents a halfway signaling exchange shared path protection(HSE-SPP)on the backup route for a fast connection recovery strategy.In the proposed HSE-SPP,a pre-assigned intermediate node on the backup route ...This paper presents a halfway signaling exchange shared path protection(HSE-SPP)on the backup route for a fast connection recovery strategy.In the proposed HSE-SPP,a pre-assigned intermediate node on the backup route is chosen for signaling exchange.When connection fails,source and destination nodes simultaneously generate backup connection setup messages to the pre-assigned intermediate node on the reserved backup route.At the intermediate node,signaling process occurs,and acknowledgment is generated for data transmission to the respective end nodes.Consequently,connection recovery time by applying HSE-SPP becomes very low.Simulations are performed for network parameters and results are verified with existing strategies.The average recovery time(RT),bandwidth blocking probability(BBP),bandwidth provisioning ratio(BPR),and resource overbuild(RO)ratio of HSE-SPP for ARPANET is 13.54 ms,0.18,3.02,0.55,and for dedicated path protection(DPP)are 13.20 ms,0.56,6.30,3.75 and for shared path protection(SPP)22.19 ms,0.22,3.23,0.70 respectively.Similarly,average RT,BBP,BPR and RO of HSE-SPP for COST239 are8.33 ms,0.04,1.64,0.26,and for DPP 4.23,0.47,3.50,2.04,and for SPP 11.81,0.08,1.66,0.27 respectively.Hence,results of the proposed strategy are better in terms of RT,BBP,BPR,and RO ratio.展开更多
A new routing and wavelength assignment method applied in hierarchical wavelength division multiplexing(WDM)networks is proposed.The algorithm is called offline band priority algorithm(offline BPA).The offline BPA tar...A new routing and wavelength assignment method applied in hierarchical wavelength division multiplexing(WDM)networks is proposed.The algorithm is called offline band priority algorithm(offline BPA).The offline BPA targets to maximize the number of waveband paths under the condition of minimum number of wavelengths,and solve the routing and wavelength assignment(RWA)problem with waveband grooming to reduce cost.Based on the circle construction algorithm,waveband priority function is introduced to calculate the RWA problem.Simulation results demonstrate that the proposed algorithm achieves significant cost reduction in WDM network construction.展开更多
Purpose-Until now,the algorithms used to compute an equilibrate route assignment do not return an integer solution.This disagreement constitutes a non-negligible drawback.In fact,it is shown in the literature that a f...Purpose-Until now,the algorithms used to compute an equilibrate route assignment do not return an integer solution.This disagreement constitutes a non-negligible drawback.In fact,it is shown in the literature that a fractional solution is not a good approximation of the integer one.The purpose of this paper is to find an integer route assignment.Design/methodology/approach-The static route assignment problem is modeled as an asymmetric network congestion game.Then,an algorithm inspired from ant supercolony behavior is constructed,in order to compute an approximation of the Pure Nash Equilibrium(PNE)of the considered game.Several variants of the algorithm,which differ by their initializing steps and/or the kind of the provided algorithm information,are proposed.Findings-An evaluation of these variants over different networks is conduced and the obtained results are encouraging.Indeed,the adaptation of ant supercolony behavior to solve the problem under consideration shows interesting results,since most of the algorithm’s variants returned high-quality approximation of PNE in more than 91 percent of the treated networks.Originality/value-The asymmetric network congestion game is used to model route assignment problem.An algorithm with several variants inspired from ant supercolony behavior is developed.Unlike the classical ant colony algorithms where there is one nest,herein,several nests are considered.The deposit pheromone of an ant from a given nest is useful for the ants of the other nests.展开更多
This paper proposes a dynamic RWA scheme using fuzzy logic control on IP/GMPLS over WDM networks to achieve the best quality of network transmission. The proposed algorithm dynamically allocates network resources and ...This paper proposes a dynamic RWA scheme using fuzzy logic control on IP/GMPLS over WDM networks to achieve the best quality of network transmission. The proposed algorithm dynamically allocates network resources and reserves partial bandwidth based on the current network status, which includes the request bandwidth, average utilization for each wavelength and its coefficient of variance (C.V.) of data traffic, to determine whether the connection can be set tip. Five fuzzy sets for request bandwidth, average rate and C.V. of data traffic are used to divide the variable space: very large (LP), large (SP), normal (ZE), small (SN), and very small (LN). Setting the fuzzy limit is a key part in the proposed algorithm. The simulation of scenarios in this paper has two steps. In the first step, the adaptive fuzzy limits are evaluated based on average transmission cost pertaining to ten network statuses. The second step is to compare the proposed algorithm with periodic measurement of traffic (PMT) in ATM networks in six network situations to show that the proposed FC-RWA algorithm can provide better network transmission.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB2900604in part by the National Natural Science Foundation of China(NSFC)under Grant U22B2033,61975234,61875230。
文摘With the development of satellite communication,in order to solve the problems of shortage of on-board resources and refinement of delay requirements to improve the communication performance of satellite optical networks,this paper proposes a bee colony optimization algorithm for routing and wavelength assignment based on directional guidance(DBCO-RWA)in satellite optical networks.In D-BCORWA,directional guidance based on relative position and link load is defined,and then the link cost function in the path search stage is established based on the directional guidance factor.Finally,feasible solutions are expanded in the global optimization stage.The wavelength utilization,communication success probability,blocking rate,communication hops and convergence characteristic are simulated.The results show that the performance of the proposed algorithm is improved compared with existing algorithms.
基金supported by the National Natural Science Foundation of China(No.61675033,61575026,61675233)National High Technical Research and Development Program of China(No.2015AA015504)
文摘This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.
基金Supported by the National High Technology Development 863 Program of China(2001AA122023)
文摘In wavelength division multiplexing (WDM) networks without wavelengthconversion functionality, we convert the dynamic routing and wavelength assignment problem formulti-lightpath demands to the edge-disjoint paths problem, and propose a new algorithm. Thecomputer simulations show that the proposed algorithm has better blocking probability performancethan a sequential algorithm, which first separates a multi-lightpath demand into mutilplesingle-lightpath demands, then uses the fixed-alternate routing-first fit wavelength assignment(AR-FF) algorithm for each single-lightpath demand.
文摘Routing and wavelength assignment for online real-time multicast connection setup is a difficult task due to the dynamic change of availabilities of wavelengths on links and the consideration of wavelength conversion delay in WDM networks. This paper presents a distributed routing and wavelength assignment scheme for the setup of real-time multicast connections. It integrates routing and wavelength assignment as a single process, which greatly reduces the connection setup time. The proposed routing method is based on the Prim’s MST (Minimum Spanning Tree) algorithm and the K-restricted breadth-first search method, which can produce a sub-minimal cost tree under a given delay bound. The wave-length assignment uses the least-conversion and load balancing strategies. Simulation results show that the proposed algorithm is suitable for online multicast connection establishment in WDM networks.
文摘To solve the routing and wavelength assignment problem in the optical network, this paper put forward the metric model with sparse wavelength conversion and routing algorithm with pruning (RAP) in order to efficiently realize the resource management in the unified way. Related methods with dynamic and adaptation characters considered the link state conditions and certain heuristic information. They can be applied to current network environments. In particular, the simulation was made according to the selfsimilar traffic and the results showed that the corresponding methods not only provided service differentiation but also reduced the overall average blocking Drobabilitv.
基金Supported by the Natrual Science Foundation of Shaanxi (No.2004A02) and Outstanding Scholar Project of P. R. China (2002).
文摘In this paper, a Wavelength Division Multiplexing (WDM) network model based on the equivalent networks is described, and wavelength-dependent equivalent arc, equivalent networks, equivalent multicast tree and some other terms are presented. Based on this model and relevant Routing and Wavelength Assign- ment (RWA) strategy, a unicast RWA algorithm and a multicast RWA algorithm are presented. The wave- length-dependent equivalent arc expresses the schedule of local RWA and the equivalent network expresses the whole topology of WDM optical networks, so the two algorithms are of the flexibility in RWA and the optimi- zation of the whole problem. The theoretic analysis and simulation results show the two algorithms are of the stronger capability and the lower complexity than the other existing algorithms for RWA problem, and the complexity of the two algorithms are only related to the scale of the equivalent networks. Finally, we prove the two algorithms’ feasibility and the one-by-one corresponding relation between the equivalent multicast tree and original multicast tree, and point out the superiorities and drawbacks of the two algorithms respectively.
基金Supported by the National Natural Science Foundation of China(No.61675033,61575026,61675232,61571440)the National High Technology Research and Development Program of China(No.2015AA015504)
文摘In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is introduced which can improve robustness of the network. Above all,a cross-layer optimization model is designed,which considers transmission delay and wavelength-continuity constraint,as well as Doppler wavelength shift. Then CL-DRWA is applied to solve this model,resulting in finding an optimal light path satisfying the above constraints for every connection request. In CL-DRWA,Bellman-Ford method is used to find an optimal route and a distributed relative capacity loss method is implemented to get an optimal wavelength assignment result on the optimal route. Moreover,compared with the dynamic routing and wavelength assignment algorithm based on minimum delay strategy( MD-DRWA),CL-DRWA can make an improvement of 5. 3% on the communication success probability. Meanwhile,CL-DRWA can meet the requirement of transmission delay for real-time services.
文摘With the rise of cloud computing in recent years, a large number of streaming media has yielded an exponential growth in network traffic. With the now present 5G and future 6G, the development of the Internet of Things (IoT), social networks, video on demand, and mobile multimedia platforms, the backbone network is bound to bear more traffic. The transmission capacity of Single Core Fiber (SCFs) may be limited in the future and Spatial Division Multiplexing (SDM) leveraging multi-core fibers promises to be one of the solutions for the future. Currently, Elastic optical networks (EONs) with multi-core fibers (MCFs) are a kind of SDM-enabled EONs (SDM-EON) used to enhance the capacity of transmission. The resource assignment in MCFs, however, will be subject to Inter-Core Crosstalk (IC-XT), hence, reducing the effectiveness of transmission. This research highlights the routing, modulation level, and spectrum assignment (RMLSA) problems with anycast traffic mode in SDM-EON. A multipath routing scheme is used to reduce the blocking rate of anycast traffic in SDM-EON with the limit of inter-core crosstalk. Hence, an integer linear programming (ILP) problem is formulated and a heuristic algorithm is proposed. Two core-assignment strategies: First-Fit (FF) and Random-Fit (RF) are used and their performance is evaluated through simulations. The simulation results show that the multipath routing method is better than the single-path routing method in terms of blocking ratio and spectrum utilization ratio. Moreover, the FF is better than the RF in low traffic load in terms of blocking ratio (BR), and the opposite in high traffic load. The FF is better than the RF in terms of a spectrum utilization ratio. In an anycast protection problem, the proposed algorithm has a lower BR than previous works.
文摘After analyzing the merits and shortcomings of Fixed-Alternated Routing algorithm (FAR) and Least Loaded Routing algorithm (LLR),we propose one novel dynamic optical routing algorithm. Having considered the influences of path’s length and path’s congestion just like in FAR and LLR,we take into account the network resource status-amount of free wavelengths in the network. Proposed algorithm sets up connections on three possible paths according to amount of available free wave-lengths in the network,which effectively decreases the blocking probability. The National Science Foundation (NSF) network and mesh-torus network simulation results show that the performance of this algorithm is better than that of FAR and LLR.
基金supported by the National Natural Science Foundation of China(No.60572050)the National High Technology Research and Development Programme of China(No.2008AA01Z211)
文摘Conventional optical burst switching(OBS)technique adopts purely statistical multiplex mechanismso that the bursts collide with each other very easily.To address this problem,a novel proactive con-tention avoidance scheme is proposed,which assigns dedicated wavelengths to each ingress node,then st-numbering algorithm is used to construct the traffic load balanced spanning trees .In this way,contentioncan be eliminated at ingress nodes,and the amount of bursts that could be accommodated by ingressnodes will be maximized.Further,those unused wavelengths left by traffic load balanced spanning treeare also organized as partial trees to carry bursts,thus the link utilization can be improved effectively.Simulation result shows that our scheme can improve the burst loss performance significantly without thewavelength converters or optical buffers comparing to other popular routing and wavelength assignment(RWA)algorithms.
基金supported by the National Science and Technology Major Project(No.2016ZX03001023-005)National Natural Science Foundation of China(No.61403109)+2 种基金China Postdoctoral Science Foundation(No.2019M651263)Scientific Research Fund of Heilongjiang Provincial Education Department(No.12541169)Natural Science Foundation of Heilongjiang Province(No.F2017015)。
文摘All-optical network,as a new backbone network,is featured with high speed and large capacity transmission.It may be out of order due to various faults while providing high-performance transmission service,thus more effective fault repairing methods are required.A routing and wavelength assignment method based on SDN is designed and analyzed from the perspective of service function chaining in this paper.A multi-objective integer linear programming model based on impairment-aware and scheduling time is constructed by combining the unified control of control plane with the resource allocation mode of service function virtualization.Meanwhile,an improved Firefly Algorithm is adopted to solve the model for obtaining a better scheduling scheme,so as to the resources are allocated on-demand in a more flexible and efficient way,which effectively improved the self-recovery capability of the network.In the simulation experiments,Through the comparison between the method proposed and methods based on centralization and distribution,method proposed in the paper is superior to the compared ones in the indexes of survivability,blocking probability,link recovery time,and presents a better scheduling performance,makes the system has stronger ability of self-healing in the face of failure.
文摘This paper presents a halfway signaling exchange shared path protection(HSE-SPP)on the backup route for a fast connection recovery strategy.In the proposed HSE-SPP,a pre-assigned intermediate node on the backup route is chosen for signaling exchange.When connection fails,source and destination nodes simultaneously generate backup connection setup messages to the pre-assigned intermediate node on the reserved backup route.At the intermediate node,signaling process occurs,and acknowledgment is generated for data transmission to the respective end nodes.Consequently,connection recovery time by applying HSE-SPP becomes very low.Simulations are performed for network parameters and results are verified with existing strategies.The average recovery time(RT),bandwidth blocking probability(BBP),bandwidth provisioning ratio(BPR),and resource overbuild(RO)ratio of HSE-SPP for ARPANET is 13.54 ms,0.18,3.02,0.55,and for dedicated path protection(DPP)are 13.20 ms,0.56,6.30,3.75 and for shared path protection(SPP)22.19 ms,0.22,3.23,0.70 respectively.Similarly,average RT,BBP,BPR and RO of HSE-SPP for COST239 are8.33 ms,0.04,1.64,0.26,and for DPP 4.23,0.47,3.50,2.04,and for SPP 11.81,0.08,1.66,0.27 respectively.Hence,results of the proposed strategy are better in terms of RT,BBP,BPR,and RO ratio.
文摘A new routing and wavelength assignment method applied in hierarchical wavelength division multiplexing(WDM)networks is proposed.The algorithm is called offline band priority algorithm(offline BPA).The offline BPA targets to maximize the number of waveband paths under the condition of minimum number of wavelengths,and solve the routing and wavelength assignment(RWA)problem with waveband grooming to reduce cost.Based on the circle construction algorithm,waveband priority function is introduced to calculate the RWA problem.Simulation results demonstrate that the proposed algorithm achieves significant cost reduction in WDM network construction.
文摘Purpose-Until now,the algorithms used to compute an equilibrate route assignment do not return an integer solution.This disagreement constitutes a non-negligible drawback.In fact,it is shown in the literature that a fractional solution is not a good approximation of the integer one.The purpose of this paper is to find an integer route assignment.Design/methodology/approach-The static route assignment problem is modeled as an asymmetric network congestion game.Then,an algorithm inspired from ant supercolony behavior is constructed,in order to compute an approximation of the Pure Nash Equilibrium(PNE)of the considered game.Several variants of the algorithm,which differ by their initializing steps and/or the kind of the provided algorithm information,are proposed.Findings-An evaluation of these variants over different networks is conduced and the obtained results are encouraging.Indeed,the adaptation of ant supercolony behavior to solve the problem under consideration shows interesting results,since most of the algorithm’s variants returned high-quality approximation of PNE in more than 91 percent of the treated networks.Originality/value-The asymmetric network congestion game is used to model route assignment problem.An algorithm with several variants inspired from ant supercolony behavior is developed.Unlike the classical ant colony algorithms where there is one nest,herein,several nests are considered.The deposit pheromone of an ant from a given nest is useful for the ants of the other nests.
文摘This paper proposes a dynamic RWA scheme using fuzzy logic control on IP/GMPLS over WDM networks to achieve the best quality of network transmission. The proposed algorithm dynamically allocates network resources and reserves partial bandwidth based on the current network status, which includes the request bandwidth, average utilization for each wavelength and its coefficient of variance (C.V.) of data traffic, to determine whether the connection can be set tip. Five fuzzy sets for request bandwidth, average rate and C.V. of data traffic are used to divide the variable space: very large (LP), large (SP), normal (ZE), small (SN), and very small (LN). Setting the fuzzy limit is a key part in the proposed algorithm. The simulation of scenarios in this paper has two steps. In the first step, the adaptive fuzzy limits are evaluated based on average transmission cost pertaining to ten network statuses. The second step is to compare the proposed algorithm with periodic measurement of traffic (PMT) in ATM networks in six network situations to show that the proposed FC-RWA algorithm can provide better network transmission.