To deeply exploit the mechanisms of ant colony optimization (ACO) applied to develop routing in mobile ad hoe networks (MANETS),some existing representative ant colony routing protocols were analyzed and compared....To deeply exploit the mechanisms of ant colony optimization (ACO) applied to develop routing in mobile ad hoe networks (MANETS),some existing representative ant colony routing protocols were analyzed and compared.The analysis results show that every routing protocol has its own characteristics and competitive environment.No routing protocol is better than others in all aspects.Therefore,based on no free lunch theory,ant routing protocols were decomposed into three key components:route discovery,route maintenance (including route refreshing and route failure handling) and data forwarding.Moreover,component based ant routing protocol (CBAR) was proposed.For purpose of analysis,it only maintained basic ant routing process,and it was simple and efficient with a low overhead.Subsequently,different mechanisms used in every component and their effect on performance were analyzed and tested by simulations.Finally,future research strategies and trends were also summarized.展开更多
An efficient solution is proposed in this article to determine the best reliable route and to prolong the lifetime of the mobile Ad-hoc networks (MANETs). In the proposed solution, the route discovery process of the...An efficient solution is proposed in this article to determine the best reliable route and to prolong the lifetime of the mobile Ad-hoc networks (MANETs). In the proposed solution, the route discovery process of the Ad-hoc on-demand distance vector routing protocol (AODV) has been modified using a novel delayed rebroadcast scheme. It combines the shortest route selection criterion of AODV with the real network status including the wireless link quality, the remaining power capacity, as well as the traffic load at each node. Simulation results show that the proposed scheme can significantly extend the network lifetime and provide fewer packet losses than the conventional AODV protocol.展开更多
基金Project(61225012)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProjects(61070162,71071028,70931001)supported by the National Natural Science Foundation of China+4 种基金Project(20120042130003)supported by the Specialized Research Fund of the Doctoral Program of Higher Education for the Priority Development Areas,ChinaProjects(20100042110025,20110042110024)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,ChinaProject(2012)supported by the Specialized Development Fund for the Internet of Things from the Ministry of Industry and Information Technology of ChinaProject(N110204003)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(L2013001)supported by the Scientific Research Fund of Liaoning Provincial Education Department,China
文摘To deeply exploit the mechanisms of ant colony optimization (ACO) applied to develop routing in mobile ad hoe networks (MANETS),some existing representative ant colony routing protocols were analyzed and compared.The analysis results show that every routing protocol has its own characteristics and competitive environment.No routing protocol is better than others in all aspects.Therefore,based on no free lunch theory,ant routing protocols were decomposed into three key components:route discovery,route maintenance (including route refreshing and route failure handling) and data forwarding.Moreover,component based ant routing protocol (CBAR) was proposed.For purpose of analysis,it only maintained basic ant routing process,and it was simple and efficient with a low overhead.Subsequently,different mechanisms used in every component and their effect on performance were analyzed and tested by simulations.Finally,future research strategies and trends were also summarized.
基金the National Natural Science Foundation of China (60672124)the Hi-Tech Research and Development Program of China (2007AA01Z221)
文摘An efficient solution is proposed in this article to determine the best reliable route and to prolong the lifetime of the mobile Ad-hoc networks (MANETs). In the proposed solution, the route discovery process of the Ad-hoc on-demand distance vector routing protocol (AODV) has been modified using a novel delayed rebroadcast scheme. It combines the shortest route selection criterion of AODV with the real network status including the wireless link quality, the remaining power capacity, as well as the traffic load at each node. Simulation results show that the proposed scheme can significantly extend the network lifetime and provide fewer packet losses than the conventional AODV protocol.