Based on ranging intersection theory, a new method which is simple and easy to operate was proposed for data collection in the mine surface deformation monitoring with GPS-RTK centering rod measurements. It can fully ...Based on ranging intersection theory, a new method which is simple and easy to operate was proposed for data collection in the mine surface deformation monitoring with GPS-RTK centering rod measurements. It can fully eliminate the inevitable shaking error and the vertical deflection, and to some extent weaken the multipath effect on the estimates of coordinates in a relatively short period of time, using high-frequency observations. The results show that three-dimensional coordinates with a height accuracy better than 1 cm, horizontal accuracy better than 2-4 cm can be achieved through only 15-30 s continuous observation by 20 Hz high-frequency and effectively improve the measurement accuracy and efficiency of RTK, fully satisfying the high-speed and high-precision data acquisition in mine surface subsidence deformation monitoring.展开更多
基金Projects(41074010,40904004)supported by National Natural Science Foundation of ChinaProject(LEDM2010B12)supported by the Scientific Research Foundation of Key Laboratory for Land Environment and Disaster Monitoring of SBSM,China
文摘Based on ranging intersection theory, a new method which is simple and easy to operate was proposed for data collection in the mine surface deformation monitoring with GPS-RTK centering rod measurements. It can fully eliminate the inevitable shaking error and the vertical deflection, and to some extent weaken the multipath effect on the estimates of coordinates in a relatively short period of time, using high-frequency observations. The results show that three-dimensional coordinates with a height accuracy better than 1 cm, horizontal accuracy better than 2-4 cm can be achieved through only 15-30 s continuous observation by 20 Hz high-frequency and effectively improve the measurement accuracy and efficiency of RTK, fully satisfying the high-speed and high-precision data acquisition in mine surface subsidence deformation monitoring.