期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Role of High Excitations in Constructing Sub-spectroscopic Accuracy Intermolecular Potential of He-HCN: Critically Examined by the High-Resolution Spectra with Resonance States
1
作者 侯丹 张晓龙 +1 位作者 翟羽 李辉 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第6期776-788,I0003,共14页
Interpreting high-resolution rovibrational spectra of weakly bound complexes commonly requires spectroscopic accuracy (〈1 cm-1) potential energy surfaces (PES). Constructing high-accuracy ab initio PES relies on ... Interpreting high-resolution rovibrational spectra of weakly bound complexes commonly requires spectroscopic accuracy (〈1 cm-1) potential energy surfaces (PES). Constructing high-accuracy ab initio PES relies on the high-level electronic structure approaches and the accurate physical models to represent the potentials. The coupled cluster approaches including single and double excitations with a perturbational estimate of triple excitations (CCSD(T)) have been termed the "gold standard" of electronic structure theory, and widely used in generating intermolecular interaction energies for most van der Waals complexes. However, for HCN-He complex, the observed millimeter-wave spectroscopy with high-excited resonance states has not been assigned and interpreted even on the ab initio PES computed at CCSD(T) level of theory with the complete basis set (CBS) limit. In this work, an effective three-dimensional ab initio PES for HCN-He, which explicitly incorporates dependence on the Q1 (C-H) normal-mode coordinate of the HCN monomer has been calculated at the CCSD(T)/CBS level. The post-CCSD(T) interaction energy has been examined and included in our PES. Analytic two-dimensional PESs are obtained by least-squares fitting vibrationally averaged interaction energies for v1 (C-H)=0, and 1 to the Morse/Long-Range potential function form with root-mean-square deviations (RMSD) smaller than 0.011 cm-1. The role and significance of the post-CCSD(T) interaction energy contribution are clearly illustrated by comparison with the predicted rovibrational energy levels. With or without post-CCSD(T) corrections, the value of dissociation limit (Do) is 8.919 or 9.403 cm-1, respectively. The predicted millimeter-wave transitions and intensities from the PES with post-CCSD(T) excitation corrections are in good agreement with the available experimental data with RMS discrepancy of 0.072 cm-1. Moreover, the infrared spectrum for HCN-He complex is predicted for the first time. These results will serve as a good starting point and provide reliable guidance for future infrared studies of HCN doped in (He)n clusters. 展开更多
关键词 Potential energy surface rovibrational spectra van der Waals complex
下载PDF
Three-Dimensional Ab Initio Potential Energy Surface and Predicted Spectra for the CH_(4)-Ne Complex
2
作者 Xiao-Long Zhang Hui Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第6期874-882,I0004,共10页
We present a new three-dimensional potential energy surface(PES)for CH_(4)-Ne complex.The electronic structure computations were carried out using the coupled-cluster method with singles,doubles,and perturbative tripl... We present a new three-dimensional potential energy surface(PES)for CH_(4)-Ne complex.The electronic structure computations were carried out using the coupled-cluster method with singles,doubles,and perturbative triples[CCSD(T)],the augmented correlationconsistent aug-cc-pVXZ(X=T,Q)basis sets were employed with bond functions placed at the mid-point on the intermolecular axis,and the energies obtained were then extrapolated to the complete basis set limit.Analytic intermolecular PES is obtained by least-squares fitting to the Morse/Long-Range(MLR)potential function form.These fits to 664 points have root-mean-square deviations of 0.042 cm^(−1).The bound rovibrational levels are calculated for the first time,and the predicted infrared spectra are in good agreement with the experimental values.The microwave spectra for CH_(4)-Ne dimer have also been predicted for the first time.The analytic PES can be used for modeling the dynamical behavior in CH_(4)-(Ne)N clusters,and it will be useful for future studies of the collision-induced-absorption for the CH_(4)-Ne dimer. 展开更多
关键词 Potential energy surface CH_(4)-Ne rovibrational spectra
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部