In this pap er, a novel size-dep endent functionally graded (FG) cylindrical shell model is develop ed based on the nonlocal strain gradient theory in conjunction with the Gurtin-Murdoch surface elasticity theory . Th...In this pap er, a novel size-dep endent functionally graded (FG) cylindrical shell model is develop ed based on the nonlocal strain gradient theory in conjunction with the Gurtin-Murdoch surface elasticity theory . The new model containing a nonlocal parameter, a material length scale parameter, and several surface elastic constants can capture three typical typ es of size e ects simultaneously , which are the nonlocal stress ef- fect, the strain gradient e ect, and the surface energy e ects. With the help of Hamilton’s principle and rst-order shear deformation theory , the non-classical governing equations and related b oundary conditions are derived. By using the prop osed model, the free vibra- tion problem of FG cylindrical nanoshells with material prop erties varying continuously through the thickness according to a p ower-law distribution is analytically solved, and the closed-form solutions for natural frequencies under various b oundary conditions are obtained. After verifying the reliability of the prop osed model and analytical method by comparing the degenerated results with those available in the literature, the in uences of nonlocal parameter, material length scale parameter, p ower-law index, radius-to-thickness ratio, length-to-radius ratio, and surface e ects on the vibration characteristic of func- tionally graded cylindrical nanoshells are examined in detail.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11872233 and11472163)the China Scholarship Council(No.201706890041)the Innovation Program of Shanghai Municipal Education Commission(No.2017-01-07-00-09-E00019)
文摘In this pap er, a novel size-dep endent functionally graded (FG) cylindrical shell model is develop ed based on the nonlocal strain gradient theory in conjunction with the Gurtin-Murdoch surface elasticity theory . The new model containing a nonlocal parameter, a material length scale parameter, and several surface elastic constants can capture three typical typ es of size e ects simultaneously , which are the nonlocal stress ef- fect, the strain gradient e ect, and the surface energy e ects. With the help of Hamilton’s principle and rst-order shear deformation theory , the non-classical governing equations and related b oundary conditions are derived. By using the prop osed model, the free vibra- tion problem of FG cylindrical nanoshells with material prop erties varying continuously through the thickness according to a p ower-law distribution is analytically solved, and the closed-form solutions for natural frequencies under various b oundary conditions are obtained. After verifying the reliability of the prop osed model and analytical method by comparing the degenerated results with those available in the literature, the in uences of nonlocal parameter, material length scale parameter, p ower-law index, radius-to-thickness ratio, length-to-radius ratio, and surface e ects on the vibration characteristic of func- tionally graded cylindrical nanoshells are examined in detail.