期刊文献+
共找到31,420篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental Study and Failure Criterion Analysis of Rubber Fibre Reinforced Concrete under Biaxial Compression-Compression
1
作者 Yanli Hu Peiwei Gao +2 位作者 Furong Li Zhiqing Zhao Zhenpeng Yu 《Journal of Renewable Materials》 SCIE EI 2023年第4期2055-2073,共19页
In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering di... In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering different rubber replacement rates and polypropylene fibre contents.The failure modes and mechanical property parameters of different RFRC working conditions were obtained from the experiment to explore the effects of rubber replacement rate and polypropylene fibre content on the biaxial compression-compression properties of RFRC.The following conclusions were drawn.Under the influence of lateral compressive stress,the biaxial compression-compression failure mode gradually developed from a columnar pattern to a flaky pattern,suggesting that the incorporation of rubber and polypropylene fibres into the concrete resulted in a significant change in the development of cracks.For different rubber replacement rates and polypropylene fibre contents,the vertical compressive stress exhibited the same developing trend under the influence of lateral compressive stress.Specifically,the lateral compressive stress imposed the minimum effect on the vertical compressive stress when the rubber replacement rate and polypropylene fibre content were 20%and 0.4%,respectively,and imposed the maximum effect when the rubber replacement rate and polypropylene fibre content were 20%and 0%,respectively.With the increase of rubber replacement rate,the vertical peak stress was significantly reduced,which implies that an appropriate amount of polypropylene fibres can increase the vertical peak stress to a certain extent.Then,the biaxial compression-compression mechanism of RFRC was analysed from the microscopic level by using scanning electron microscope(SEM).Meanwhile,based on Kupfer’s biaxial compression-compression failure criterion and the octahedral stress space,a biaxial compression-compression failure criterion for RFRC was proposed,which was proven to have good applicability.The research results of this study provide important theoretical basis for the engineering application and development of RFRC. 展开更多
关键词 rubber fibre reinforced concrete(RFRC) biaxial compression-compression mechanical properties mechanism analysis failure criterion
下载PDF
Low-temperature characteristicsof rubbers and performance testsof type 120 emergencyvalve diaphragms
2
作者 Ming Gao Anhui Pan +5 位作者 Yi Huang Jiaqi Wang Yan Zhang Xiao Xie Huanre Han Yinghua Jia 《Railway Sciences》 2024年第1期47-58,共12页
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista... Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms. 展开更多
关键词 Natural rubber Chloroprene rubber Low-temperature characteristic 120 emergency valve DIAPHRAGM
下载PDF
Mechanical behavior of nanorubber reinforced epoxy over a wide strain rate loading
3
作者 Yinggang Miao Jianping Yin +1 位作者 Wenxuan Du Lianyang Chen 《Nano Materials Science》 EI CAS CSCD 2024年第1期106-114,共9页
Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rat... Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating. 展开更多
关键词 Strain rate Strain hardening Nano rubber EPOXY Adiabatic shearing localization
下载PDF
Comparison of nonlinear modeling methods for the composite rubber clamp
4
作者 Yiming CAO Hui MA +4 位作者 Xumin GUO Bingfeng ZHAO Hui LI Xin WANG Bing WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期763-778,共16页
The cubic stiffness force model(CSFM)and Bouc-Wen model(BWM)are introduced and compared innovatively.The unknown coefficients of the nonlinear models are identified by the genetic algorithm combined with experiments.B... The cubic stiffness force model(CSFM)and Bouc-Wen model(BWM)are introduced and compared innovatively.The unknown coefficients of the nonlinear models are identified by the genetic algorithm combined with experiments.By fitting the identified nonlinear coefficients under different excitation amplitudes,the nonlinear vibration responses of the system are predicted.The results show that the accuracy of the BWM is higher than that of the CSFM,especially in the non-resonant region.However,the optimization time of the BWM is longer than that of the CSFM. 展开更多
关键词 pipeline system nonlinear clamp model composite rubber clamp amplitude-dependent characteristic vibration response experiment
下载PDF
Influence of Ultrasonic Vibrations on the Static Friction Characteristics of a Rubber/Aluminum Couple 被引量:2
5
作者 程廷海 高焓 包钢 《Chinese Physics Letters》 SCIE CAS CSCD 2011年第12期157-159,共3页
A novel ultrasonic vibration approach is introduced into a chloroprene rubber/aluminum friction couple for improving the static friction properties between rubber and metal.Compared to the test results without vibrati... A novel ultrasonic vibration approach is introduced into a chloroprene rubber/aluminum friction couple for improving the static friction properties between rubber and metal.Compared to the test results without vibrations,the static friction force of a chloroprene rubber/aluminum couple decreases observably,leading to the ultimate displacement of rubber.The values of the static friction force and ultimate displacement can be ultimately reduced to 23.1%and 50%of those without ultrasonic vibrations,respectively. 展开更多
关键词 FRICTION rubber COUPLE
下载PDF
Physical and damping properties of kenaf fibre filled natural rubber/thermoplastic polyurethane composites 被引量:3
6
作者 A.M.Noor Azammi S.M.Sapuan +1 位作者 Mohamad R.Ishak Mohamed T.H.Sultan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第1期29-34,共6页
The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/ther... The paper presents the investigation of the effect of alkaline treatment of sodium hydroxide(NaOH) on physical and dynamic mechanical analysis(DMA) viscoelastic properties of kenaf fibre filled natural rubber(NR)/thermoplastic polyurethane(TPU) composites.The treated kenaf fiber,NR and TPU were weighed and proportioned according to the required compositions and were blended using hot mixed Brabender machine.The polymer composites were then fabricated using the hot press to form a sample board.The sample was cut and prepared and water absorption,density,thickness swelling and DMA tests were performed.As far as physical properties are concerned,composites with the highest NR amount of shows the best results,which indicates good fiber bonding adhesion.The polymer composites with the highest amount of TPU shows the highest damping properties at high temperature. 展开更多
关键词 KENAF fiber ALKALINE treatment THERMOPLASTIC POLYURETHANE Natural rubber Dynamic mechanical analysis
下载PDF
End-Use Properties of Pineapple Leaf Fibre Filled Natural Rubber 被引量:1
7
作者 Chinenye C. Ekwueme Isaac O. Igwe Anokwute O. Vivian 《Journal of Minerals and Materials Characterization and Engineering》 2019年第6期435-445,共11页
The effects of incorporating pineapple leaf fibre (PLF) as a filler on the end-end properties of natural rubber vulcanizates were studied at different filler contents and particle sizes. The pineapple leaf fibre was u... The effects of incorporating pineapple leaf fibre (PLF) as a filler on the end-end properties of natural rubber vulcanizates were studied at different filler contents and particle sizes. The pineapple leaf fibre was used within filler contents, 0 to 40 phr at the following filler particle sizes, 75, 150 and 300 μm. The PLF was characterized for filler properties while carbon black (N330) served as the reference filler. The natural rubber vulcanizates were compounded on a two-roll mill. Results showed that the abrasion resistance of filled natural rubber vulcanizates was generally higher than that of the unfilled natural rubber vulcanizate at filler content, 5 phr, and for PLF (150 and 300 μm) and carbon black filled natural rubber vulcanizates, the abrasion resistance decreased within filler content, 5 to 20 phr after which it increased with filler content. CB exhibited better abrasion resistance in the vulcanizates than PLF at filler contents greater than 20 phr. The hardness of filled natural rubber vulccanizates was generally greater than that of unfilled vulcanizate and increased with increases in filler particle size at filler contents, 10 and 20 phr. The specific gravity of the rubber vulcanizates increased gradually with the increase in filler content at filler content greater than 5 phr, and increased with increases in filler particle size at any filler content considered. The swelling index of filled natural rubber vulcanizates in toluene generally decreased with increasing filler particle size at filler contents, 5, 10 and 40 phr whereas the swelling index for PLF (150 μm) filled natural rubber decreased with increases in filler content. CB filled vulcanizates absorbed the highest amount of toluene (2.5%) in the vulcanizates at filler content, 40 phr. PLF (150 and 300 μm) generally gave optimum performances in the end-use properties of the rubber vulcanizates determined within filler contents, 30 and 40 phr. The incorporation of pineapple leaf fibre into natural rubber was found to improve the end-use properties of natural rubber vulcanizates and therefore, has potential in the formulation of natural rubber products. 展开更多
关键词 Natural rubber PINEAPPLE LEAF Fibre Carbon Black FILLER End-Use Properties
下载PDF
缢蛏对潮间带原油污染的氧化应激及IBR评价 被引量:2
8
作者 徐青霞 潘玉英 +5 位作者 杨婷婷 杨金生 张萌 陈帆 王滢赢 唐忠伟 《中国环境科学》 EI CAS CSCD 北大核心 2023年第1期328-340,共13页
通过研究不同浓度原油污染对缢蛏(Sinonovacula constricta)鳃和内脏团抗氧化酶活性、脂质过氧化及鳃结构的影响,结合综合生物标志物响应(IBR),探讨潮间带原油污染对生物的毒性效应.结果显示:在剂量-效应方面,2种组织超氧化物歧化酶(SOD... 通过研究不同浓度原油污染对缢蛏(Sinonovacula constricta)鳃和内脏团抗氧化酶活性、脂质过氧化及鳃结构的影响,结合综合生物标志物响应(IBR),探讨潮间带原油污染对生物的毒性效应.结果显示:在剂量-效应方面,2种组织超氧化物歧化酶(SOD)活性和内脏团中谷胱甘肽过氧化物酶(GPx)总体上表现为低浓度诱导、高浓度抑制效应;SOD诱导与过氧化氢酶(CAT)抑制同时出现,规律大致相反.在时间-效应上,SOD活性呈升高-降低-升高的趋势,CAT与GPx呈先降低后升高的趋势;谷胱甘肽硫转移酶(GST)在鳃中呈现先升高后降低的趋势,酶活性最高为371.663U/mgprot.暴露前期(6h)缢蛏2种组织中丙二醛(MDA)含量显著增加,鳃和内脏团中MDA含量最高值分别为5.030和10.705nmol/mgprot,后期逐渐平稳.IBR结果表明鳃中生物标志物对原油污染敏感度更高.原油暴露会使鳃丝结构发生变形或引起鳃丝脱离等现象.研究表明,缢蛏鳃更适宜作为潮间带原油暴露生物监测与评价的器官. 展开更多
关键词 原油 缢蛏 抗氧化酶 ibr 组织损伤
下载PDF
水稻IBR基因家族生物信息学分析
9
作者 廖嘉仪 廖芷依 王兰 《种子》 北大核心 2023年第6期57-63,共7页
本研究利用NCBI(National Center for Biotechnology Information)数据库、在线工具SMART(Simple Modular Architecture Research Tool)筛选含有IBR结构域的基因,然后通过MEGA7软件构建系统发生树,使用NCBI、PROSITE数据库分析水稻IBR... 本研究利用NCBI(National Center for Biotechnology Information)数据库、在线工具SMART(Simple Modular Architecture Research Tool)筛选含有IBR结构域的基因,然后通过MEGA7软件构建系统发生树,使用NCBI、PROSITE数据库分析水稻IBR基因家族结构,使用Plant-PLoc server软件预测水稻IBR蛋白的亚细胞定位,利用RiceXPro数据库分析水稻IBR家族基因的mRNA表达情况。结果表明,在水稻基因组中找到了124个含有IBR结构域的基因,这些基因在系统进化上被聚成A和B两大类别,其中A包括79个基因,B包括45个基因,每个类别又被分成两个亚族;玉米、大豆、高粱、拟南芥中的IBR蛋白嵌合到水稻系统发生树的4个分支内,含有IBR结构域的基因在水稻中进化更快;IBR结构域的N端RING finger结构域保守性高,水稻IBR家族是一类E3泛素连接酶;水稻IBR蛋白被定位在细胞核、高尔基体、叶绿体中,其中细胞核占96.8%;23个被检测到的IBR家族基因有15个至少在一个组织或器官中表达[FPKM(Fragments Per Kilobase of transcript per Million fragments mapped)>1],其中12个显示了较高的mRNA表达水平(FPKM>3)。 展开更多
关键词 水稻 ibr基因家族 系统进化树 亚细胞定位
下载PDF
Lifetime of metal rubber isolator with different vibration amplitudes 被引量:2
10
作者 姜洪源 夏宇宏 +2 位作者 敖宏瑞 董春芳 A.M.Ulanov 《Journal of Central South University of Technology》 2005年第2期181-185,共5页
The lifetime of metal rubber isolator and its characteristics during lifetime experiment were studied. The stepped-up test principle was adopted to study the lifetime of resonant frequency, the breakage form of metal ... The lifetime of metal rubber isolator and its characteristics during lifetime experiment were studied. The stepped-up test principle was adopted to study the lifetime of resonant frequency, the breakage form of metal rubber isolator was obtained, and the relation between the energy dissipation, resonant frequency and stiffness was obtained in (available) lifetime of the isolator. Furthermore, the reason for the changes of properties of metal rubber isolator was analyzed with contact model of metal rubber material. The results show that if the resonant amplitude is large, the stiffness of metal rubber isolator will be kept steadily for a long time, its resonant frequency will be stable and the effective working time in the protecting area will be long. The lifetime of metal rubber isolator is more than 1376 h in the experiment. The main failure forms of metal rubber isolator are accumulative wear and breaking of metal wires and spirals. In protecting area the metal rubber isolator can work effectively for a long time, and the effective working time depends on the concrete working condition. 展开更多
关键词 绝缘体 金属橡胶 生存期 振动
下载PDF
The legacy effects of rubber defoliation period on the refoliation phenology,leaf disease,and latex yield 被引量:1
11
作者 De-Li Zhai Jian-Chu Xu 《Plant Diversity》 SCIE CAS CSCD 2023年第1期98-103,共6页
The leaf phenology of trees has received particular attention for its crucial role in the global water and carbon balances,ecosystem,and species distribution.However,current studies on leaf phenology have mainly focus... The leaf phenology of trees has received particular attention for its crucial role in the global water and carbon balances,ecosystem,and species distribution.However,current studies on leaf phenology have mainly focused on temperate trees,while few studies including tropical trees.Little attention has been paid to globally extensive industrial plantations.Rubber plantations are important to both the local and global economies.In this study,we investigated the legacy effects of defoliation phenology on the following year’s leaf flushing,leaf disease,and also latex yield of rubber trees,an economically important tree to local people and the world.Results show that extended duration of defoliation increased the subsequent duration of refoliation and rates of infection by powdery mildew disease,but led to reduced latex yield in March.This legacy effect of rubber defoliation may relate to the carbohydrate reserved in the trees.A longer duration of defoliation would consume more reserved carbohydrates,reducing available reserves for disease defense and latex production.Extended duration of defoliation period was associated with either a lower temperature before the cessation of latex tapping in October-November and/or a higher temperature after the cessation of latex tapping in December-January.Leaf falling signals the end of photosynthetic activities in deciduous trees.Thus,the leaf falling phenology will impact ecological processes involving rubber trees.Our findings indicated that the inclusion of defoliation periods in future rubber trees’ research,will be crucial to furthering our understanding of leaf flushing,powdery mildew disease,and latex yield. 展开更多
关键词 CARBOHYDRATE DEFOLIATION Legacy effect PHENOLOGY rubber trees
下载PDF
Dynamic simulation on rubber spring supporting equipment of vibrating screen 被引量:3
12
作者 SU Rong-hua PENG Chen-yu 《Journal of Coal Science & Engineering(China)》 2011年第2期187-191,共5页
关键词 动态仿真分析 橡胶弹簧 配套设备 振动筛 动态性能 模态频率 刚度系数 振动位移
下载PDF
Cure Characteristics and Mechanical Properties of Pineapple Leaf Fibre Filled Natural Rubber
13
作者 Chinenye C. Ekwueme Isaac O. Igwe 《Journal of Minerals and Materials Characterization and Engineering》 2018年第6期601-617,共17页
The cure characteristics and mechanical properties of natural rubber filled with pineapple leaf fibre (PLF) were studied at different filler contents and particle sizes. The PLF was characterized for filler properties... The cure characteristics and mechanical properties of natural rubber filled with pineapple leaf fibre (PLF) were studied at different filler contents and particle sizes. The PLF was characterized for filler properties while carbon black (N330) served as the reference filler. The natural rubber vulcanizates were compounded on a two-roll mill. Results showed that PLF (300 μm) filled natural rubber vulcanizates exhibited the highest maximum torque (Tmax) (47.04 lb-in) at filler content, 10 phr among the filler particle sizes investigated. The minimum torque (Tmin) of the vulcanizates generally increased with the increase in filler contents and particle sizes. The scorch times of the rubber vulcanizates did not vary with fibre content while the cure times of PLF (300 μm) filled rubber vulcanizates decreased with filler content. The tensile strength (TS) of PLF (150 μm) filled natural rubber vulcanizates generally increased with the increase in filler content whereas the tensile modulus of the rubber vulcanizates decreased steadily with increasing filler particle size at filler contents, 5 and 30 phr. The elongation at break (EB) of the rubber vulcanizates exhibited no general order of variation with filler content and particle size, and was generally greater than that of unfilled natural rubber. The flexural strength of the rubber vulcanizates increased with increasing filler particle size at filler contents, 20 and 40 phr. The addition of PLF and carbon black improved the compression strength of the rubber vulcanizates, and which for PLF (300 μm) and CB fillers generally increased with the increase in filler content. The study has demonstrated the enhancement of properties of natural rubber vulcanizates on incorporation of PLF into natural rubber, however, the property enhancements obtained were less than those recorded for CB filled natural rubber vulcanizates. 展开更多
关键词 Natural rubber PINEAPPLE LEAF FibrE Carbon Black MECHANICAL Properties CURE Characteristics
下载PDF
Optimization of Nonlinear Vibration Characteristics for Seismic Isolation Rubber
14
作者 A.Takahashi T.Shibata +1 位作者 K.Motoyama K.Misaji 《Computer Modeling in Engineering & Sciences》 SCIE EI 2017年第1期1-15,共15页
A method for reducing the damage to a structure caused by an earthquake namely,using laminated rubber for seismic isolation is proposed,and the vibration characteristics of the rubber(which minimizes the seismic respo... A method for reducing the damage to a structure caused by an earthquake namely,using laminated rubber for seismic isolation is proposed,and the vibration characteristics of the rubber(which minimizes the seismic response of the structure during an earthquake)is optimized.A method called“Equivalent Linear System using Restoring Force Model of Power Function Type”(PFT-ELS)is applied to nonlinear vibration analysis of the rubber.In that analysis,a building with 15 layers of the laminated rubber is modeled.The seismic response of the building is analyzed,and the usefulness of the laminated rubber is demonstrated by comparing the seismic responses in the cases with and without the laminated rubber.In addition,the hysteresis restoring-force characteristic of the laminated rubber,which minimizes the seismic response of the building,was optimized by using a genetic algorithm(GA).Based on these results,the optimum restoring-force characteristic for different earthquakes was determined.As a result,it was clarified that the developed optimization method can determine the vibration characteristics of the laminated rubber for minimizing the damage to the structure in the design phase. 展开更多
关键词 Seismic-isolation LAMINATED rubber high-rise-building structure PFT-ELS seismic-response analysis long-period EARTHQUAKE
下载PDF
Development of calibration models for rapid determination of moisture content in rubber sheets using portable near-infrared spectrometers
15
作者 Amorndej Puttipipatkajorn Amornrit Puttipipatkajorn 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2020年第2期81-92,共12页
Rubber sheets are one of the primary products of natural rubber and are the main raw material in various rubber industries.The quality of a rubber sheet can be visually examined by holding it against clear light to in... Rubber sheets are one of the primary products of natural rubber and are the main raw material in various rubber industries.The quality of a rubber sheet can be visually examined by holding it against clear light to inspect for any specks and impurities inside,but its moisture content is difficult to evaluate based on a visual inspection and this might lead to unfair trading.Herein,we developed a rapid,robust and nondestructive near-infrared spectroscopy(NIRS)-based method for moisture content determination in rubber sheets.A set of 300 rubber sheets were divided into a calibration(200 samples)and prediction groups(100 samples).The calibration set was used to develop NIRS calibration equation using different calibration models,Partial Least Square Regression(PLSR),Least Square Support Vector Machine(LS-SVM)and Articial Neural Network(ANN).Among the models investigated,the ANN model with therst derivative of spectral preprocessing presented the best prediction with a coe±cient of determination(R^(2)_(P))of 0.993,root mean square error of calibration(RMSEC)of 0.126%and root mean square error of prediction(RMSEP)of 0.179%.The results indicated that the proposed NIRS-ANN model will be able to reduce human error and provide a highly accurate estimate of the moisture content in a rubber sheet compared to traditional wet chemistry estimation methods according to AOAC standards. 展开更多
关键词 NIR spectroscopy rubber sheet moisture content partial least squares regression arti¯cial neural network least squares support vector machine
下载PDF
Influence of Rubber Powder Movement on Properties of Asphalt Rubber from the Mesoscopic View
16
作者 LI Haibin HU Yihong +4 位作者 SHI Xuan ZHANG Mingming ZHAO Guijuan ZOU Xiaolong SENG Yanping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期312-324,共13页
The research on asphalt performance mainly focused on the macro performance and micro mechanism.Mesoscopic analysis was introduced to study the effect of rubber powder movement on asphalt rubber properties.After the p... The research on asphalt performance mainly focused on the macro performance and micro mechanism.Mesoscopic analysis was introduced to study the effect of rubber powder movement on asphalt rubber properties.After the preparation parameters and the preparation process of asphalt rubber were determined,the modification mechanism and rheological properties were analyzed which revealed the compatible stability mechanism.Then,the analysis model of asphalt rubber was established to focus on simulating the effect of rubber powder and the spatial movement on its mechanical properties.The experimental results show that rubber powder can make the asphalt rubber bear more uniform stress distribution and enhance the ability to resist deformation.Meanwhile,the rotational motion and final distribution of rubber powder have an obvious impact on the mechanical properties of asphalt rubber.In the selected feature points,the average stress of rubber powder at 0°space angle is only 34.1%of that at90°space angle.When the rubber powders are all in parallel in the ideal state,it enhances the mechanical properties the most.This study supplements the“mesoscopic”scale between macro and micro research.The relationship between micro mechanism and macro properties of asphalt rubber will be established from the mesoscopic perspective.It is also an effort to realize the effective correlation from micro,mesoscopic to macro in asphalt. 展开更多
关键词 asphalt rubber rubber powder movement space angle of rubber powder mesoscopic scale numerical simulation
下载PDF
Workability and Durability of Concrete Incorporating Waste Tire Rubber:A Review
17
作者 Peng Zhang Xixi Wang +1 位作者 Juan Wang Tianhang Zhang 《Journal of Renewable Materials》 SCIE EI 2023年第2期745-776,共32页
Environmental problems caused by waste tires are becoming increasingly prominent.There is an urgent need to find a green way to dispose of waste tires,and scholars have made considerable efforts in this regard.In the ... Environmental problems caused by waste tires are becoming increasingly prominent.There is an urgent need to find a green way to dispose of waste tires,and scholars have made considerable efforts in this regard.In the construction industry,rubber extracted from waste tires can be added to concrete to alleviate environmental problems to a certain extent.As a new building material,rubber concrete has superior properties compared to ordinary concrete and has been widely used in many fields.Numerous studies have been conducted worldwide to investigate the effect of waste tire rubber on the performance of concrete.It has been reported that the addition of waste tire rubber has a significant influence on the performance of concrete.Workability influences the hardened performance of rubber concrete,especially the durability.Based on the current research results,the workability and durability of concrete manufactured with waste tire rubber,including water absorption and permeability,carbonation resistance,chloride ion permeability resistance,and freeze-thaw resistance,are summarized in this paper.It is concluded that the addition of waste tires has a negative effect on the workability of concrete.In terms of durability,concrete exhibits better chloride ion penetration resistance and frost resistance,with a higher water absorption rate,and lower anti-permeability and carbonation resistance owing to the addition of waste tire rubber. 展开更多
关键词 rubber concrete waste tire rubber WORKABILITY DURABILITY
下载PDF
Material Model Research on Rubber Vibration Isolators
18
作者 WANG Rui LI Shi-qi SONG Shao-yun 《International Journal of Plant Engineering and Management》 2007年第2期61-68,共8页
A viscohyperelastic constitutive model is proposed to describe the mechanical behaviour of vibration isolation rubber under broad-band vibration. This constitutive model comprises two parts: a component with three pa... A viscohyperelastic constitutive model is proposed to describe the mechanical behaviour of vibration isolation rubber under broad-band vibration. This constitutive model comprises two parts: a component with three parameters to characterize the hyperelastic static properties of rubber materials, and the other component incorporating two relaxation time parameters, corresponding to high and low strain rates, respectively, to describe the dynamic response under vibration and impact loadings. Based on this proposed constitutive model, a series of experiments were performed on two types of rubber materials over a wide strain rate range. The results predicted from this model are in good agreement with the experimental data. 展开更多
关键词 viscohyperelastic constitutive model rubber vibration isolator material model
下载PDF
Mechanical Test and Meso-Model Numerical Study of Composite Rubber Concrete under Salt-Freezing Cycle
19
作者 Mingkai Sun Yanan Wang +3 位作者 Pingwei Jiang Zerong Song Zhan Gao Jiaming Xu 《Journal of Renewable Materials》 SCIE EI 2023年第2期643-668,共26页
A composite rubber concrete(CRC)was designed by combining waste tire rubber particles with particle sizes of 3~5 mm,1~3 mm and 20 mesh.Taking the rubber content of different particle sizes as the influencing factors,t... A composite rubber concrete(CRC)was designed by combining waste tire rubber particles with particle sizes of 3~5 mm,1~3 mm and 20 mesh.Taking the rubber content of different particle sizes as the influencing factors,the range and variance analysis of the mechanical and impermeability properties of CRC was carried out by orthogonal test.Through analysis,it is concluded that the optimal proportion of 3~5 mm,1~3 mm,and 20 mesh particle size composite rubber is 1:2.5:5.5 kinds of CRC and 3 kinds of ordinary single-mixed rubber concrete(RC)with a total content of 10%~20%were designed under this ratio,and the salt-freezing cycle test was carried out with a concentration of 5%Na 2 SO4 solution.The physical and mechanical damage laws during 120 salt-freezing cycles are obtained,and the corresponding damage prediction model is established according to the experimental data.The results show that:on the one hand,the composite rubber in CRC produces a more uniform“graded”structure,forms a retractable particle group,and reduces the loss of mechanical properties of CRC.On the other hand,colloidal particles with different particle sizes are used as air entraining agent to improve the pore structure of concrete and introduce evenly dispersed bubbles,which fundamentally improves the durability of concrete.Under the experimental conditions,the CRC performance is the best when the overall content of composite rubber is 15%. 展开更多
关键词 Waste rubber composite rubber concrete orthogonal test mechanical properties DURABILITY
下载PDF
Rheological and Morphological Characterization of Modified Bitumen with Cup Lump Rubber
20
作者 Mohammed Albuaymi Suleiman Abdulrahman +2 位作者 Fayez Alanazi Hani Alanazi Musa Adamu 《Journal of Renewable Materials》 SCIE EI 2023年第5期2433-2451,共19页
Pure bitumen is not suitable for heavy traffic loads;hence modifiers are used to improve the bitumen performance.Recently,cup lump rubber(CLR)has become a preferred modifier due to its outstanding performance and less... Pure bitumen is not suitable for heavy traffic loads;hence modifiers are used to improve the bitumen performance.Recently,cup lump rubber(CLR)has become a preferred modifier due to its outstanding performance and less cost.However,little is known about the interactions between CLR and bitumen.Thus,this study investigates the behavior of bitumen with CLR.Four percentages of CLR(2.5%,5.0%,7.5%,and 10.0%by weight of bitumen)were used to modify conventional 60/70 penetration grade bitumen.The modified bitumen was evaluated through different laboratory testing such as dynamic shear rheometer,rotational viscosity,softening point,bending beam rheometer,ductility,and elastic recovery.The testing results show that the addition of CLR increased the bitumen’s rutting resistance by 3 PG grades at high temperatures.At low pavement temperatures,the cup lump rubber modified bitumen(CMB)can withstand up to−34℃.Fourier Transform Infrared(FTIR)analysis shows that the Aromaticity index at 1600 cm^(−1) rose as the CLR percentage increased,indicating the formation of a binder with a compact structure.This is expected to improve the elasticity of bitumen throughπ-πinteractions.Atomic Force Microscopy(AFM)results showed the Catana phase increased in size and quantity at 5.0%and 7.5%CLR content.While contact angle measurement revealed that the binders are hydrophobic and tend to repel the dropped water on the bitumen surface. 展开更多
关键词 Cup lump rubber polymer modified bitumen HYDROPHOBICITY natural rubber
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部