For a long time and until now, rubber is the most used material for the manufacture of tires for motor vehicles. Unfortunately, once the tire meets its life cycle, the remaining rubber cannot be recycled, so the tires...For a long time and until now, rubber is the most used material for the manufacture of tires for motor vehicles. Unfortunately, once the tire meets its life cycle, the remaining rubber cannot be recycled, so the tires are discarded in collection centers and often in clandestine dumps. This represents a serious environmental problem because, in one case, these waste tires become breeding grounds for insects and wildlife that is harmful to humans. In the second case, the tires are burned, releasing highly damaging gases into the atmosphere. On the other hand, concrete is worldwide the construction material par excellence. It is basically composed of cement, gravel and sand. Mixing these three components in different proportions, their mechanical strength in compression can be increased. However, due to its fragile nature, concrete, once a crack is formed, it rapidly advances by fragmenting the material and producing its rapid collapse. In the present work, in order contribute to the care of the environment as well as to modify the fracture mode of the concrete, rubber particles obtained from waste tires were used as sand substitute in hydraulic concrete. In addition, rubber modified samples concrete were lately exposed to 70 kGy of gamma radiation in order to study the effects of this radiation on the mechanical deformation of concrete. The results showed a decrease in the mechanical properties of the concrete with rubber particles with respect to the traditional concrete itself. However, such decreases were offset by the fact that samples with rubber addition do not collapses as fast as the free rubber samples. The acquired data pave the way for research with great benefits, such as the use of recycled tires in concrete for its fracture mode modification in a beneficial way, as well as a possible decrease in the cost of concrete.展开更多
A composite rubber concrete(CRC)was designed by combining waste tire rubber particles with particle sizes of 3~5 mm,1~3 mm and 20 mesh.Taking the rubber content of different particle sizes as the influencing factors,t...A composite rubber concrete(CRC)was designed by combining waste tire rubber particles with particle sizes of 3~5 mm,1~3 mm and 20 mesh.Taking the rubber content of different particle sizes as the influencing factors,the range and variance analysis of the mechanical and impermeability properties of CRC was carried out by orthogonal test.Through analysis,it is concluded that the optimal proportion of 3~5 mm,1~3 mm,and 20 mesh particle size composite rubber is 1:2.5:5.5 kinds of CRC and 3 kinds of ordinary single-mixed rubber concrete(RC)with a total content of 10%~20%were designed under this ratio,and the salt-freezing cycle test was carried out with a concentration of 5%Na 2 SO4 solution.The physical and mechanical damage laws during 120 salt-freezing cycles are obtained,and the corresponding damage prediction model is established according to the experimental data.The results show that:on the one hand,the composite rubber in CRC produces a more uniform“graded”structure,forms a retractable particle group,and reduces the loss of mechanical properties of CRC.On the other hand,colloidal particles with different particle sizes are used as air entraining agent to improve the pore structure of concrete and introduce evenly dispersed bubbles,which fundamentally improves the durability of concrete.Under the experimental conditions,the CRC performance is the best when the overall content of composite rubber is 15%.展开更多
Eight interfacial modifiers were used to improve the interfacial bonding strength between the crumb rubber and matrix of Crumb Rubber Mortar (CRM), and the physical and mechanical properties and microstructure of CR...Eight interfacial modifiers were used to improve the interfacial bonding strength between the crumb rubber and matrix of Crumb Rubber Mortar (CRM), and the physical and mechanical properties and microstructure of CRM were also studied. The results show that, the interfacial modifiers obviously improve the interface bonding strength between the crumb rubber and matrix and the whole strength of CRM, and silicone modified styrene-acryl ate-emulsion has the best effect. The rubber-cement matrix interface was proved by SEM that the interfacial modifiers treated rubber showed good adhesion to the matrix.展开更多
In order to study the mechanical and deformation characteristics of rubber concrete under repeated loading,50 cycles of high-stress equal amplitude cyclic loading and uniaxial compression tests were carried out on 30 ...In order to study the mechanical and deformation characteristics of rubber concrete under repeated loading,50 cycles of high-stress equal amplitude cyclic loading and uniaxial compression tests were carried out on 30 concrete specimens of 5 groups.The change of uniaxial mechanical properties and the deformation during cyclic loading of normal concrete(NC)and rubber concrete(RC)with 5%,10%,15%,and 20%content were analysed.The results show that the peak stress and modulus of elasticity decrease and the peak strain increases with the increase of rubber content.After cyclic loading,the degradation degree of NC peak stress and elastic modulus reached 11.0%and 36.8%respectively.This study can provide a basis for the application of rubber concrete.展开更多
In view of the disadvantage that the mechanical properties of cement-based composites can be significantly reduced by incorporating waste rubber powder in situ, the surface modification methods of the original rubber ...In view of the disadvantage that the mechanical properties of cement-based composites can be significantly reduced by incorporating waste rubber powder in situ, the surface modification methods of the original rubber powder by coupling agent KH560, sodium hydroxide, polyvinyl alcohol (PVA), methyl hydroxyethyl cellulose ether (MHEC) and tetraethyl orthosilicate (TEOS) as precursors were adopted respectively. The modification of waste rubber powder was studied by Change rate of mortar strength of cement-based composite mortar mixed with waste rubber powder. The results show that the hybrid modification method using tetraethyl orthosilicate as precursor has better ef-fect. When 5 phr ethyl orthosilicate is added, the compressive strength and flexural strength of cement-based composite mortar can be increased by 31.7% and 28%. Scanning electron microscopy (SEM) results show that the surface of waste rubber powder with good modification effect has many pro-trusions and flake-like porous structures which are beneficial to its bonding with cement-based materials.展开更多
Different rubber aggregates lead to changes in the effect of stress conditions on the mechanical behavior of concrete,and studies on the triaxial properties of self-compacting rubber concrete(SCRC)are rare.In this stu...Different rubber aggregates lead to changes in the effect of stress conditions on the mechanical behavior of concrete,and studies on the triaxial properties of self-compacting rubber concrete(SCRC)are rare.In this study,35 cylindrical specimens taking lateral stress and rubber type as variables were prepared to study the fresh properties and mechanical behaviors of SCRC under triaxial compression,where the rubber contains two types,i.e.,380μm rubber powder and 1–4 mm rubber particles,and four contents,i.e.,10%,20%and 30%.The test results demonstrated that SCRC exhibited a typical oblique shear failure mode under triaxial compression and had a more moderate descending branch compared with self-compacting concrete(SCC).The presence of lateral stress can significantly improve the compression properties,including initial elastic modulus,peak stress and peak strain,with an improvement range of 3%–73%for peak stress.While rubber aggregates mainly targeted the deformation abilities and toughness for improvement,and the peak strain improvement ranges were 0.1–3.1 times and 0.1–1.0 times for SCRC containing rubber powder and SCRC containing rubber particles,respectively,relative to SCC.At a high lateral stress of at least 12 MPa,the loss of strength due to the addition of rubber can be controlled within 10%,in which case the content of rubber powder and rubber particles was recommended to be at most 20%and 30%,respectively.Based on the Mohr-Coulomb theory,the failure criteria of SCRC with different rubber types were established.For analysis and design purposes,an empirical model was proposed to predict the stressstrain behavior under triaxial compression,considering the influence of different rubber content and lateral stress.The results obtained in this study can provide a valuable reference for the design and application of self-compacting rubberized concrete in practical projects,especially those involving three-way compression states and requiring high-quality deformation and energy dissipation.展开更多
It has become a research hotspot to explore raw material substitutes of concrete.It is important to research the mechanical properties of self-compacting concrete(SCC)with slag powder(SP)and rubber particle(RP)replaci...It has become a research hotspot to explore raw material substitutes of concrete.It is important to research the mechanical properties of self-compacting concrete(SCC)with slag powder(SP)and rubber particle(RP)replacing cement and coarse aggregate,respectively.12 kinds of composite modified self-compacting concrete(CMSCC)specimens were prepared by using 10%,20%and 30%SP and 30%,40%,50%and 60%RP.The rheological properties,mechanical properties and microstructure of the CMSCC were investigated.Results indicate that the workability,compressive strength,splitting tensile strength and flexural strength of CMSCC prepared by 20%SP and less than 40%RP are improved.In order to maximize the utilization of waste materials,20%SP and 40%RP can be used as the optimal ratio of the combined modifier.The microstructure shows that the addition of proper amount of SP is conducive to the formation of increasingly more uniform C-S-H gel.C-SH gel can fill the internal pores of the sample and enhance the adhesion between the aggregate,thus improving the mechanical properties of CMSCC.RP has a rougher surface and lower density and stiffness,which inhibits the workability and mechanical properties of CMSCC.The above research results have important theoretical and practical significance for the selection of raw materials of self-compacting concrete and the rational use of industrial wastes.展开更多
In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering di...In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering different rubber replacement rates and polypropylene fibre contents.The failure modes and mechanical property parameters of different RFRC working conditions were obtained from the experiment to explore the effects of rubber replacement rate and polypropylene fibre content on the biaxial compression-compression properties of RFRC.The following conclusions were drawn.Under the influence of lateral compressive stress,the biaxial compression-compression failure mode gradually developed from a columnar pattern to a flaky pattern,suggesting that the incorporation of rubber and polypropylene fibres into the concrete resulted in a significant change in the development of cracks.For different rubber replacement rates and polypropylene fibre contents,the vertical compressive stress exhibited the same developing trend under the influence of lateral compressive stress.Specifically,the lateral compressive stress imposed the minimum effect on the vertical compressive stress when the rubber replacement rate and polypropylene fibre content were 20%and 0.4%,respectively,and imposed the maximum effect when the rubber replacement rate and polypropylene fibre content were 20%and 0%,respectively.With the increase of rubber replacement rate,the vertical peak stress was significantly reduced,which implies that an appropriate amount of polypropylene fibres can increase the vertical peak stress to a certain extent.Then,the biaxial compression-compression mechanism of RFRC was analysed from the microscopic level by using scanning electron microscope(SEM).Meanwhile,based on Kupfer’s biaxial compression-compression failure criterion and the octahedral stress space,a biaxial compression-compression failure criterion for RFRC was proposed,which was proven to have good applicability.The research results of this study provide important theoretical basis for the engineering application and development of RFRC.展开更多
文摘For a long time and until now, rubber is the most used material for the manufacture of tires for motor vehicles. Unfortunately, once the tire meets its life cycle, the remaining rubber cannot be recycled, so the tires are discarded in collection centers and often in clandestine dumps. This represents a serious environmental problem because, in one case, these waste tires become breeding grounds for insects and wildlife that is harmful to humans. In the second case, the tires are burned, releasing highly damaging gases into the atmosphere. On the other hand, concrete is worldwide the construction material par excellence. It is basically composed of cement, gravel and sand. Mixing these three components in different proportions, their mechanical strength in compression can be increased. However, due to its fragile nature, concrete, once a crack is formed, it rapidly advances by fragmenting the material and producing its rapid collapse. In the present work, in order contribute to the care of the environment as well as to modify the fracture mode of the concrete, rubber particles obtained from waste tires were used as sand substitute in hydraulic concrete. In addition, rubber modified samples concrete were lately exposed to 70 kGy of gamma radiation in order to study the effects of this radiation on the mechanical deformation of concrete. The results showed a decrease in the mechanical properties of the concrete with rubber particles with respect to the traditional concrete itself. However, such decreases were offset by the fact that samples with rubber addition do not collapses as fast as the free rubber samples. The acquired data pave the way for research with great benefits, such as the use of recycled tires in concrete for its fracture mode modification in a beneficial way, as well as a possible decrease in the cost of concrete.
基金supported by the National Key Research and Development Program of China under the Grant No.2018YFC0809400.
文摘A composite rubber concrete(CRC)was designed by combining waste tire rubber particles with particle sizes of 3~5 mm,1~3 mm and 20 mesh.Taking the rubber content of different particle sizes as the influencing factors,the range and variance analysis of the mechanical and impermeability properties of CRC was carried out by orthogonal test.Through analysis,it is concluded that the optimal proportion of 3~5 mm,1~3 mm,and 20 mesh particle size composite rubber is 1:2.5:5.5 kinds of CRC and 3 kinds of ordinary single-mixed rubber concrete(RC)with a total content of 10%~20%were designed under this ratio,and the salt-freezing cycle test was carried out with a concentration of 5%Na 2 SO4 solution.The physical and mechanical damage laws during 120 salt-freezing cycles are obtained,and the corresponding damage prediction model is established according to the experimental data.The results show that:on the one hand,the composite rubber in CRC produces a more uniform“graded”structure,forms a retractable particle group,and reduces the loss of mechanical properties of CRC.On the other hand,colloidal particles with different particle sizes are used as air entraining agent to improve the pore structure of concrete and introduce evenly dispersed bubbles,which fundamentally improves the durability of concrete.Under the experimental conditions,the CRC performance is the best when the overall content of composite rubber is 15%.
基金Funded by Beijing Excellent Talents Program (No.2009A005015000006)Sci. & Tech. Development Program of Beijing Education Commission(No.KM200710005007)Beijing Talents Promoting Education Program, and Student Innovation Team Program of BJUT (No.CTD-2009-05)
文摘Eight interfacial modifiers were used to improve the interfacial bonding strength between the crumb rubber and matrix of Crumb Rubber Mortar (CRM), and the physical and mechanical properties and microstructure of CRM were also studied. The results show that, the interfacial modifiers obviously improve the interface bonding strength between the crumb rubber and matrix and the whole strength of CRM, and silicone modified styrene-acryl ate-emulsion has the best effect. The rubber-cement matrix interface was proved by SEM that the interfacial modifiers treated rubber showed good adhesion to the matrix.
文摘In order to study the mechanical and deformation characteristics of rubber concrete under repeated loading,50 cycles of high-stress equal amplitude cyclic loading and uniaxial compression tests were carried out on 30 concrete specimens of 5 groups.The change of uniaxial mechanical properties and the deformation during cyclic loading of normal concrete(NC)and rubber concrete(RC)with 5%,10%,15%,and 20%content were analysed.The results show that the peak stress and modulus of elasticity decrease and the peak strain increases with the increase of rubber content.After cyclic loading,the degradation degree of NC peak stress and elastic modulus reached 11.0%and 36.8%respectively.This study can provide a basis for the application of rubber concrete.
文摘In view of the disadvantage that the mechanical properties of cement-based composites can be significantly reduced by incorporating waste rubber powder in situ, the surface modification methods of the original rubber powder by coupling agent KH560, sodium hydroxide, polyvinyl alcohol (PVA), methyl hydroxyethyl cellulose ether (MHEC) and tetraethyl orthosilicate (TEOS) as precursors were adopted respectively. The modification of waste rubber powder was studied by Change rate of mortar strength of cement-based composite mortar mixed with waste rubber powder. The results show that the hybrid modification method using tetraethyl orthosilicate as precursor has better ef-fect. When 5 phr ethyl orthosilicate is added, the compressive strength and flexural strength of cement-based composite mortar can be increased by 31.7% and 28%. Scanning electron microscopy (SEM) results show that the surface of waste rubber powder with good modification effect has many pro-trusions and flake-like porous structures which are beneficial to its bonding with cement-based materials.
基金supported by National Natural Science Foundation of China(Project No.51468003)Natural Science Foundation of Guangxi Province(Project No.2018GXNSFAA050007).
文摘Different rubber aggregates lead to changes in the effect of stress conditions on the mechanical behavior of concrete,and studies on the triaxial properties of self-compacting rubber concrete(SCRC)are rare.In this study,35 cylindrical specimens taking lateral stress and rubber type as variables were prepared to study the fresh properties and mechanical behaviors of SCRC under triaxial compression,where the rubber contains two types,i.e.,380μm rubber powder and 1–4 mm rubber particles,and four contents,i.e.,10%,20%and 30%.The test results demonstrated that SCRC exhibited a typical oblique shear failure mode under triaxial compression and had a more moderate descending branch compared with self-compacting concrete(SCC).The presence of lateral stress can significantly improve the compression properties,including initial elastic modulus,peak stress and peak strain,with an improvement range of 3%–73%for peak stress.While rubber aggregates mainly targeted the deformation abilities and toughness for improvement,and the peak strain improvement ranges were 0.1–3.1 times and 0.1–1.0 times for SCRC containing rubber powder and SCRC containing rubber particles,respectively,relative to SCC.At a high lateral stress of at least 12 MPa,the loss of strength due to the addition of rubber can be controlled within 10%,in which case the content of rubber powder and rubber particles was recommended to be at most 20%and 30%,respectively.Based on the Mohr-Coulomb theory,the failure criteria of SCRC with different rubber types were established.For analysis and design purposes,an empirical model was proposed to predict the stressstrain behavior under triaxial compression,considering the influence of different rubber content and lateral stress.The results obtained in this study can provide a valuable reference for the design and application of self-compacting rubberized concrete in practical projects,especially those involving three-way compression states and requiring high-quality deformation and energy dissipation.
基金This research was supported by the Key Science and Technology Projects in Transportation Industry(2018-MS2-051).
文摘It has become a research hotspot to explore raw material substitutes of concrete.It is important to research the mechanical properties of self-compacting concrete(SCC)with slag powder(SP)and rubber particle(RP)replacing cement and coarse aggregate,respectively.12 kinds of composite modified self-compacting concrete(CMSCC)specimens were prepared by using 10%,20%and 30%SP and 30%,40%,50%and 60%RP.The rheological properties,mechanical properties and microstructure of the CMSCC were investigated.Results indicate that the workability,compressive strength,splitting tensile strength and flexural strength of CMSCC prepared by 20%SP and less than 40%RP are improved.In order to maximize the utilization of waste materials,20%SP and 40%RP can be used as the optimal ratio of the combined modifier.The microstructure shows that the addition of proper amount of SP is conducive to the formation of increasingly more uniform C-S-H gel.C-SH gel can fill the internal pores of the sample and enhance the adhesion between the aggregate,thus improving the mechanical properties of CMSCC.RP has a rougher surface and lower density and stiffness,which inhibits the workability and mechanical properties of CMSCC.The above research results have important theoretical and practical significance for the selection of raw materials of self-compacting concrete and the rational use of industrial wastes.
基金supported by the National 12th Five Year Plan of Science and Technology Support Project(2015 BAL02b02)National Spark Plan Project(2015 GA690045),Jiangsu Province“Six Talent Peaks”Team Project(XCL-CXTD−007).
文摘In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering different rubber replacement rates and polypropylene fibre contents.The failure modes and mechanical property parameters of different RFRC working conditions were obtained from the experiment to explore the effects of rubber replacement rate and polypropylene fibre content on the biaxial compression-compression properties of RFRC.The following conclusions were drawn.Under the influence of lateral compressive stress,the biaxial compression-compression failure mode gradually developed from a columnar pattern to a flaky pattern,suggesting that the incorporation of rubber and polypropylene fibres into the concrete resulted in a significant change in the development of cracks.For different rubber replacement rates and polypropylene fibre contents,the vertical compressive stress exhibited the same developing trend under the influence of lateral compressive stress.Specifically,the lateral compressive stress imposed the minimum effect on the vertical compressive stress when the rubber replacement rate and polypropylene fibre content were 20%and 0.4%,respectively,and imposed the maximum effect when the rubber replacement rate and polypropylene fibre content were 20%and 0%,respectively.With the increase of rubber replacement rate,the vertical peak stress was significantly reduced,which implies that an appropriate amount of polypropylene fibres can increase the vertical peak stress to a certain extent.Then,the biaxial compression-compression mechanism of RFRC was analysed from the microscopic level by using scanning electron microscope(SEM).Meanwhile,based on Kupfer’s biaxial compression-compression failure criterion and the octahedral stress space,a biaxial compression-compression failure criterion for RFRC was proposed,which was proven to have good applicability.The research results of this study provide important theoretical basis for the engineering application and development of RFRC.