A model to describe the hysteresis damper character of rubber material is presented in this paper. It consists of a parallel spring and damper, whose coefficients change with vibration frequencies. In order to acquire...A model to describe the hysteresis damper character of rubber material is presented in this paper. It consists of a parallel spring and damper, whose coefficients change with vibration frequencies. In order to acquire these relations, the force decomposition is carried out according to some sine vibration measurement data about nonlinear forces changing with deformations of the rubber material. The nonlinear force is decomposed into a spring force and a damper force, which are represented by a frcquency-dependent spring and damper coefficient, respectively. Repeating this step for different measurements will give different coefficients corresponding to different frequencies. Then, application of a parameter identification method will provide the requested functions over frequency. Using those formulae, as an example, the dynamic character of a hollow shaft system supported by rubber rings is analyzed and the acceleration response curve in the centroid position is calculated. Comparisons with sine vibration experiments of the real system show a maximal inaccuracy of 8. 8 %. Application of this model and procedure can simplify the modeling and analysis of mechanical systems including rubber materials.展开更多
Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literatu...Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literature.On the other hand,investigations regarding the irregular base-isolated reinforced concrete structures’performance when subjected to pulse-like earthquakes are very scarce.The severity of pulse-like earthquakes emerges from their ability to destabilize the base-isolated structure by remarkably increasing the displacement demands.Thus,this study is intended to investigate the effects of pulse-like earthquake characteristics on the behavior of low-rise irregular base-isolated reinforced concrete structures.Within the study scope,investigations related to the impact of the pulse-like earthquake characteristics,irregularity type,and isolator properties will be conducted.To do so,different values of damping ratios of the base isolation system were selected to investigate the efficiency of the lead rubber-bearing isolator.In general,the outcomes of the study have shown the significance of vertical irregularity on the performance of base-isolated structures and the considerable effect of pulse-like ground motions on the buildings’behavior.展开更多
A viscohyperelastic constitutive model is proposed to describe the mechanical behaviour of vibration isolation rubber under broad-band vibration. This constitutive model comprises two parts: a component with three pa...A viscohyperelastic constitutive model is proposed to describe the mechanical behaviour of vibration isolation rubber under broad-band vibration. This constitutive model comprises two parts: a component with three parameters to characterize the hyperelastic static properties of rubber materials, and the other component incorporating two relaxation time parameters, corresponding to high and low strain rates, respectively, to describe the dynamic response under vibration and impact loadings. Based on this proposed constitutive model, a series of experiments were performed on two types of rubber materials over a wide strain rate range. The results predicted from this model are in good agreement with the experimental data.展开更多
High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negativel...High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negatively impact bridge structures.This article delves into the seismic reduction and isolation design strategies for bridges in high-intensity earthquake areas.It analyzes various seismic reduction and isolation technologies and provides case studies to help relevant units understand the design strategies of these technologies.The results of this article can be used as a guideline to effectively enhance the seismic performance of bridges in high-intensity earthquake areas.展开更多
In this study, aging and marine corrosion tests of a large number of rubber material and rubber bearings have been carried out. The constitutive Mooney-Rivlin model parameters for a rubber isolated bearing have been d...In this study, aging and marine corrosion tests of a large number of rubber material and rubber bearings have been carried out. The constitutive Mooney-Rivlin model parameters for a rubber isolated bearing have been determined. By applying the least-square method to the experimental data, the relationships between the aging time and the marine corrosion time with the constants in the constitutive model for a rubber beating have been derived. Next, the Mooney-Rivlin model has been modified accordingly. Further, using the modified Mooney-Rivlin model and the Abaqus software, the performance of the rubber isolated bearings has been simulated. The simulation results have been compared to the experimental results so as to verify the accuracy of the modified model. The comparison shows that the maximum errors for the vertical and horizontal stiffnesses are 16.8% and 0.49%, respectively. Since these errors are considered acceptable, the accuracy of the modified constitutive model can be considered verified. The results of this study can provide theoretical support for the performance study on rubber isolated bearings under the complex ocean environment and the life-cycle performance evaluation of bridges and other offshore structures.展开更多
A model to describe the hysteresis damping characteristic of rubber material was presented.It consists of a parallel spring and damper,whose coefficients change with the vibration amplitude and frequency.In order to a...A model to describe the hysteresis damping characteristic of rubber material was presented.It consists of a parallel spring and damper,whose coefficients change with the vibration amplitude and frequency.In order to acquire these relations,force decomposition was carried out according to some sine vibration measurement data of nonlinear forces changing with the deformation of the rubber material.The nonlinear force is decomposed into a spring force and a damper force,which are represented by the amplitude-and frequency-dependent spring and damper coefficients,respectively.Repeating this step for different measurements gives different coefficients corresponding to different amplitudes and frequencies.Then,the application of a parameter identification method provides the requested approximation functions over amplitude and frequency.Using those formulae,as an example,the dynamic characteristic of a hollow shaft system supported by rubber rings was analyzed and the acceleration response curve in the centroid position was calculated.Comparisons with the sine vibration experiments of the real system show a maximal inaccuracy of 8.5%.Application of this model and procedure can simplify the modeling and analysis of mechanical systems including rubber materials.展开更多
A staircase provides the main escape way from a building in an emergency.Unfortunately,it may suffer severe damages or even collapse during an earthquake.For improving the seismic performance of staircases,this paper ...A staircase provides the main escape way from a building in an emergency.Unfortunately,it may suffer severe damages or even collapse during an earthquake.For improving the seismic performance of staircases,this paper proposes an innovative staircase isolator with the features of lightweight,costeffective and ease of construction and replacement,which is formed by suitable engineering plastic shims between rubber layers.A connection construction scheme is also proposed for the isolated staircase.Systematic performance tests have been carried out to characterize the isolator in terms of mechanic behavior and ultimate states.The test results show that mechanical properties of the proposed staircase isolator are excellent and suitable for staircase in building structure.In order to investigate the influence of staircase on building structural responses,time history analyses of a typical building structure without staircase(WS),with fixed staircase(FS)and with isolated staircase(IS)are conducted and compared within the environment of SAP2000.Results show that staircase isolation can effectively eliminate the diagonal bracing effect of staircase slab and make structural components uniformly stressed.When the novel isolator is employed for staircase in a building structure,there is no vulnerable position in staircase and the performance of staircase in building structure can be greatly enhanced.展开更多
文摘A model to describe the hysteresis damper character of rubber material is presented in this paper. It consists of a parallel spring and damper, whose coefficients change with vibration frequencies. In order to acquire these relations, the force decomposition is carried out according to some sine vibration measurement data about nonlinear forces changing with deformations of the rubber material. The nonlinear force is decomposed into a spring force and a damper force, which are represented by a frcquency-dependent spring and damper coefficient, respectively. Repeating this step for different measurements will give different coefficients corresponding to different frequencies. Then, application of a parameter identification method will provide the requested functions over frequency. Using those formulae, as an example, the dynamic character of a hollow shaft system supported by rubber rings is analyzed and the acceleration response curve in the centroid position is calculated. Comparisons with sine vibration experiments of the real system show a maximal inaccuracy of 8. 8 %. Application of this model and procedure can simplify the modeling and analysis of mechanical systems including rubber materials.
文摘Nowadays,an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literature.On the other hand,investigations regarding the irregular base-isolated reinforced concrete structures’performance when subjected to pulse-like earthquakes are very scarce.The severity of pulse-like earthquakes emerges from their ability to destabilize the base-isolated structure by remarkably increasing the displacement demands.Thus,this study is intended to investigate the effects of pulse-like earthquake characteristics on the behavior of low-rise irregular base-isolated reinforced concrete structures.Within the study scope,investigations related to the impact of the pulse-like earthquake characteristics,irregularity type,and isolator properties will be conducted.To do so,different values of damping ratios of the base isolation system were selected to investigate the efficiency of the lead rubber-bearing isolator.In general,the outcomes of the study have shown the significance of vertical irregularity on the performance of base-isolated structures and the considerable effect of pulse-like ground motions on the buildings’behavior.
文摘A viscohyperelastic constitutive model is proposed to describe the mechanical behaviour of vibration isolation rubber under broad-band vibration. This constitutive model comprises two parts: a component with three parameters to characterize the hyperelastic static properties of rubber materials, and the other component incorporating two relaxation time parameters, corresponding to high and low strain rates, respectively, to describe the dynamic response under vibration and impact loadings. Based on this proposed constitutive model, a series of experiments were performed on two types of rubber materials over a wide strain rate range. The results predicted from this model are in good agreement with the experimental data.
文摘High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negatively impact bridge structures.This article delves into the seismic reduction and isolation design strategies for bridges in high-intensity earthquake areas.It analyzes various seismic reduction and isolation technologies and provides case studies to help relevant units understand the design strategies of these technologies.The results of this article can be used as a guideline to effectively enhance the seismic performance of bridges in high-intensity earthquake areas.
基金National Natural Science Foundation of China under Grant Nos.51578170 and 51678173National Basic Research Program of China(973 Program)under Grant No.2011CB013606+2 种基金Program for Changjiang Scholars and Innovative Research Team in University(IRT13057)Natural Science Foundation of Guangdong Province,China(2017A030313298)Science and Technology Program of Guangzhou,China(1201421152 and 201707010295)
文摘In this study, aging and marine corrosion tests of a large number of rubber material and rubber bearings have been carried out. The constitutive Mooney-Rivlin model parameters for a rubber isolated bearing have been determined. By applying the least-square method to the experimental data, the relationships between the aging time and the marine corrosion time with the constants in the constitutive model for a rubber beating have been derived. Next, the Mooney-Rivlin model has been modified accordingly. Further, using the modified Mooney-Rivlin model and the Abaqus software, the performance of the rubber isolated bearings has been simulated. The simulation results have been compared to the experimental results so as to verify the accuracy of the modified model. The comparison shows that the maximum errors for the vertical and horizontal stiffnesses are 16.8% and 0.49%, respectively. Since these errors are considered acceptable, the accuracy of the modified constitutive model can be considered verified. The results of this study can provide theoretical support for the performance study on rubber isolated bearings under the complex ocean environment and the life-cycle performance evaluation of bridges and other offshore structures.
基金Project(50675042) supported by the National Natural Science Foundation of China
文摘A model to describe the hysteresis damping characteristic of rubber material was presented.It consists of a parallel spring and damper,whose coefficients change with the vibration amplitude and frequency.In order to acquire these relations,force decomposition was carried out according to some sine vibration measurement data of nonlinear forces changing with the deformation of the rubber material.The nonlinear force is decomposed into a spring force and a damper force,which are represented by the amplitude-and frequency-dependent spring and damper coefficients,respectively.Repeating this step for different measurements gives different coefficients corresponding to different amplitudes and frequencies.Then,the application of a parameter identification method provides the requested approximation functions over amplitude and frequency.Using those formulae,as an example,the dynamic characteristic of a hollow shaft system supported by rubber rings was analyzed and the acceleration response curve in the centroid position was calculated.Comparisons with the sine vibration experiments of the real system show a maximal inaccuracy of 8.5%.Application of this model and procedure can simplify the modeling and analysis of mechanical systems including rubber materials.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2017YFC0703600)the National Natural Science Foundation of China(Grant Nos.51278138,51978185)+1 种基金Yangcheng Scholar’s Program of Guangzhou Municipal Department of Education(Grant No.1201541630)Innovation Research Program for the Postgraduates of Guangzhou University(Grant No.2017GDJC-D16).
文摘A staircase provides the main escape way from a building in an emergency.Unfortunately,it may suffer severe damages or even collapse during an earthquake.For improving the seismic performance of staircases,this paper proposes an innovative staircase isolator with the features of lightweight,costeffective and ease of construction and replacement,which is formed by suitable engineering plastic shims between rubber layers.A connection construction scheme is also proposed for the isolated staircase.Systematic performance tests have been carried out to characterize the isolator in terms of mechanic behavior and ultimate states.The test results show that mechanical properties of the proposed staircase isolator are excellent and suitable for staircase in building structure.In order to investigate the influence of staircase on building structural responses,time history analyses of a typical building structure without staircase(WS),with fixed staircase(FS)and with isolated staircase(IS)are conducted and compared within the environment of SAP2000.Results show that staircase isolation can effectively eliminate the diagonal bracing effect of staircase slab and make structural components uniformly stressed.When the novel isolator is employed for staircase in a building structure,there is no vulnerable position in staircase and the performance of staircase in building structure can be greatly enhanced.