This study developed a short-term econometric model of world natural rubber price Standard Malaysia Rubber Grade 20 (SMR20). Both single and simultaneous equations were utilized using monthly data from January 1990-...This study developed a short-term econometric model of world natural rubber price Standard Malaysia Rubber Grade 20 (SMR20). Both single and simultaneous equations were utilized using monthly data from January 1990-December 2008 as estimation period and data from January 2009-June 2009 was used as an ex-ante forecast. The data were tested for unit root and Vector Error Correction and co-integration method was used to estimate the parameters of the model. The models specifications were developed in order to discover the inter-relationships between NR production, consumption and prices of SMR20 and to determine forecast price of SMR20. Comparative analysis between the single-equation specification and simultaneous supply-demand and price equation were made in terms of their estimation accuracy based on RMSE, MAE and (U-Thile) criteria. Ex-ante forecasts was carried out for the period of January 2009-June 2009. The results revealed that the values of the RMSE, MAE and U of simultaneous supply-demand and price equations model were comparatively smaller than the values generated by the single-equation model. These statistics suggest that the simultaneous equation of supply-demand and price model is more accurate and efficient measure in terms of its statistical criteria than the single-equation model in predicting the price of SMR20 in the next 6 months.展开更多
Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price o...Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price of rubber.This paper aims to propose hybrid intelligent models,which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data,spanning from January 2016 to March 2021.The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining(RBFNN-kSAT).These algorithms,including Grey Wolf Optimization Algorithm,Artificial Bee Colony Algorithm,and Particle Swarm Optimization Algorithm were utilized in the forecasting data analysis.Several factors,which affect the monthly price of rubber,such as rubber production,total exports of rubber,total imports of rubber,stocks of rubber,currency exchange rate,and crude oil prices were also considered in the analysis.To evaluate the results of the introduced model,a comparison has been conducted for each model to identify the most optimum model for forecasting the price of rubber.The findings showed that GWO with RBFNN-kSAT represents the most accurate and efficient model compared with ABC with RBFNNkSAT and PSO with RBFNN-kSAT in forecasting the price of rubber.The GWO with RBFNN-kSAT obtained the greatest average accuracy(92%),with a better correlation coefficient R=0.983871 than ABC with RBFNN-kSAT and PSO with RBFNN-kSAT.Furthermore,the empirical results of this study provided several directions for policymakers to make the right decision in terms of devising proper measures in the industry to address frequent price changes so that the Malaysian rubber industry maintains dominance in the international markets.展开更多
文摘This study developed a short-term econometric model of world natural rubber price Standard Malaysia Rubber Grade 20 (SMR20). Both single and simultaneous equations were utilized using monthly data from January 1990-December 2008 as estimation period and data from January 2009-June 2009 was used as an ex-ante forecast. The data were tested for unit root and Vector Error Correction and co-integration method was used to estimate the parameters of the model. The models specifications were developed in order to discover the inter-relationships between NR production, consumption and prices of SMR20 and to determine forecast price of SMR20. Comparative analysis between the single-equation specification and simultaneous supply-demand and price equation were made in terms of their estimation accuracy based on RMSE, MAE and (U-Thile) criteria. Ex-ante forecasts was carried out for the period of January 2009-June 2009. The results revealed that the values of the RMSE, MAE and U of simultaneous supply-demand and price equations model were comparatively smaller than the values generated by the single-equation model. These statistics suggest that the simultaneous equation of supply-demand and price model is more accurate and efficient measure in terms of its statistical criteria than the single-equation model in predicting the price of SMR20 in the next 6 months.
基金supported by the Ministry of Higher Education Malaysia (MOHE)through the Fundamental Research Grant Scheme (FRGS),FRGS/1/2022/STG06/USM/02/11 and Universiti Sains Malaysia.
文摘Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price of rubber.This paper aims to propose hybrid intelligent models,which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data,spanning from January 2016 to March 2021.The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining(RBFNN-kSAT).These algorithms,including Grey Wolf Optimization Algorithm,Artificial Bee Colony Algorithm,and Particle Swarm Optimization Algorithm were utilized in the forecasting data analysis.Several factors,which affect the monthly price of rubber,such as rubber production,total exports of rubber,total imports of rubber,stocks of rubber,currency exchange rate,and crude oil prices were also considered in the analysis.To evaluate the results of the introduced model,a comparison has been conducted for each model to identify the most optimum model for forecasting the price of rubber.The findings showed that GWO with RBFNN-kSAT represents the most accurate and efficient model compared with ABC with RBFNNkSAT and PSO with RBFNN-kSAT in forecasting the price of rubber.The GWO with RBFNN-kSAT obtained the greatest average accuracy(92%),with a better correlation coefficient R=0.983871 than ABC with RBFNN-kSAT and PSO with RBFNN-kSAT.Furthermore,the empirical results of this study provided several directions for policymakers to make the right decision in terms of devising proper measures in the industry to address frequent price changes so that the Malaysian rubber industry maintains dominance in the international markets.