During hydraulic fracturing operations of low-permeability reservoirs,packers are the key component to ensure the success of multistage fracturing.Packers enable sections of the wellbore to be sealed off and separatel...During hydraulic fracturing operations of low-permeability reservoirs,packers are the key component to ensure the success of multistage fracturing.Packers enable sections of the wellbore to be sealed off and separately fractured by hydraulic pressure,one at a time,while the remainder of the wellbore is not affected.However,reliable sealing properties of the packer rubber are required to meet the high-pressure and high-temperature(HPHT)conditions of reservoirs(such as 70 MPa and 170 ℃).In this study,the structures of the packer rubber with two different materials are optimized numerically by ABAQUS and validated by experiments.The optimization process starts from the packer rubber with a conventional structure,and then,the weakest spots are identified by ABAQUS and improved by slightly varying its structure.This process is iterative,and the final optimized structure of a single rubber barrel with expanding back-up rings is achieved.For the structure of three rubber barrels with metallic protective covers,both HNBR and AFLAS fail under HPHT conditions.For the final optimized structure,the packer rubber made of AFLAS can work better under HPHT than that made of HNBR which ruptures after setting.The results show that the optimized structure of a single rubber barrel with expanding back-up rings and the material AFLAS are a good combination for the packer rubber playing an excellent sealing performance in multistage fracturing in horizontal wells.展开更多
To study the effects of different proportions of aluminum hydroxide and expandable graphite (EG) composites on flame retardation, sealing, mechanical, electrical and other properties of RTV- 1, aluminum hydroxide/ex...To study the effects of different proportions of aluminum hydroxide and expandable graphite (EG) composites on flame retardation, sealing, mechanical, electrical and other properties of RTV- 1, aluminum hydroxide/expandable graphite (ATH/EG) and silicone rubber composites were prepared by the compression molding method. The experimental results show that heat resistance improves with the increase of proportion of EG. Although the resistance coefficient changes, the composite materials still keep good electrical insulating property. Moreover, oxygen index and expansion index rise first then fall. When ATH/EG is 1:1, the oxygen index reaches the highest; the mechanical property of the silicone rubber is not affected under various environments such as acid, alkali, oily, artificial sea water environments, etc.展开更多
An approach for analyzing and optimizing sealing mechanism of ball valve made of nitrile butadiene rubber(NBR) with finite element method was presented. The Mooney-Rivlin hyperelastic material model was chosen to char...An approach for analyzing and optimizing sealing mechanism of ball valve made of nitrile butadiene rubber(NBR) with finite element method was presented. The Mooney-Rivlin hyperelastic material model was chosen to characterize NBR sealing, as it has been recommended in the similar applications. That is, NBR sealing was modeled as incompressible hyperelasticity, as well as the assumption of isotropic flow. The results illustrate the structural pressure and contact pressure on the contact surface, which shows that the NBR sealing mechanism is very suitable for sealing after dimension optimization.展开更多
Rubber sealing strips with steel bones are used in car manufacturing that produced in large quantities. Cutting processes, such as milling and punching, are needed when the strips are produced. Accuracy, smoothness an...Rubber sealing strips with steel bones are used in car manufacturing that produced in large quantities. Cutting processes, such as milling and punching, are needed when the strips are produced. Accuracy, smoothness and flatness of the machined surface have to be guaranteed in the cutting process; moreover, deformation of the steel bone and peeling-off of the rubber must be avoided. Therefore cutting action of rubber/steel strips differs from that of rubber or metal workpiece separately. In this paper, milling and punching of rubber/steel strips were studied with the aim to increase the part quality of a production line for sealing strips of cars. Suitable cutting tools and fixtures are both necessary for cutting of the strips. The teeth of the milling saw should be made knife-edged and the cutting edge of the punching tool be inclined. Fixtures should be used to sustain the workpiece and resist deformation. By using of suitable tools and fixtures, high quality of rubber/steel sealing strips is achieved in the production line.展开更多
The nitrile butadiene rubber(NBR)hardness effect on the sealing characteristics of hydraulic O-ring rod seals is analyzed based on a mixed lubrication elastohydrodynamic model.Parameterized studies are conducted to re...The nitrile butadiene rubber(NBR)hardness effect on the sealing characteristics of hydraulic O-ring rod seals is analyzed based on a mixed lubrication elastohydrodynamic model.Parameterized studies are conducted to reveal the mechanism of the influence of rubber hardness on the static and dynamic behavior of seals.The optimized selections of rubber hardness are then investigated under different conditions.Results show that the low hardness seal is prone to stress concentration due to the extrusion effect under high pressure conditions;it is also more prone to leaking.A high hardness seal can better prevent leakage by reducing film thickness but it will cause large frictional power loss and increase the probability of wear failure.The choice of low hardness is recommended to reduce friction with the premise that leakage requirements are met.展开更多
To solve the problem of sealing between the barrel and the rubber ring of shell body during an launching process of aerodynamic extinguishing cannon, a rubber sealing model with bionic dimpled characteristics was esta...To solve the problem of sealing between the barrel and the rubber ring of shell body during an launching process of aerodynamic extinguishing cannon, a rubber sealing model with bionic dimpled characteristics was established based on the theory of bionic dimpled drag reduction and the principle of rubber sealing. In condition that the bionic dimpled characteristic diameters were 1, 2, 3, 4, and 5 mm, respectively, by numerical simulation, the influence of the installing compression of the rubber sealing ring on its surface stress and deformation was analyzed, and sealing performance of the rubber ring with different diameters of bionic dimpled was studied. The results show that the deformation of rubber ring appears prominent nonlinear characteristics when compression is increased from 1.5 mm to 2.5 ram. When the compression is 2.5 mm, the equivalent compression stress on the sealing areas of both sides of the rubber seal is greater than the working pressure of aerodynamic extinguishing cannon, which could meet the sealing requirement and would not cause leakage. So the rubber sealing ring with bionic dimpled surface possesses a good sealing characteristic and has no negative effect on the sealing of shell body; When the compression is 2.5 mm, the larger equivalent stress on the edge of sealing ring and the more even stress distribution in the high pressure area are generated due to the smaller compressive stress on the bionic dimple areas, which lays a foundation for the drag reduction characteristics of the shell body's rubber ring with bionic dimpled surface.展开更多
基金financial support from the Fundamental Research Funds for the Central Universities under Grant nos. 17CX05020 and 17CX06002the Research Funds for Introducing Talent (PhD) of China University of Petroleum under Grant no. YJ20170026+1 种基金the National Science and Technology Major Project under Grant no. 2016ZX05042004the Joint Funds of the National Natural Science Foundation of China under Grant no. U1762104
文摘During hydraulic fracturing operations of low-permeability reservoirs,packers are the key component to ensure the success of multistage fracturing.Packers enable sections of the wellbore to be sealed off and separately fractured by hydraulic pressure,one at a time,while the remainder of the wellbore is not affected.However,reliable sealing properties of the packer rubber are required to meet the high-pressure and high-temperature(HPHT)conditions of reservoirs(such as 70 MPa and 170 ℃).In this study,the structures of the packer rubber with two different materials are optimized numerically by ABAQUS and validated by experiments.The optimization process starts from the packer rubber with a conventional structure,and then,the weakest spots are identified by ABAQUS and improved by slightly varying its structure.This process is iterative,and the final optimized structure of a single rubber barrel with expanding back-up rings is achieved.For the structure of three rubber barrels with metallic protective covers,both HNBR and AFLAS fail under HPHT conditions.For the final optimized structure,the packer rubber made of AFLAS can work better under HPHT than that made of HNBR which ruptures after setting.The results show that the optimized structure of a single rubber barrel with expanding back-up rings and the material AFLAS are a good combination for the packer rubber playing an excellent sealing performance in multistage fracturing in horizontal wells.
文摘To study the effects of different proportions of aluminum hydroxide and expandable graphite (EG) composites on flame retardation, sealing, mechanical, electrical and other properties of RTV- 1, aluminum hydroxide/expandable graphite (ATH/EG) and silicone rubber composites were prepared by the compression molding method. The experimental results show that heat resistance improves with the increase of proportion of EG. Although the resistance coefficient changes, the composite materials still keep good electrical insulating property. Moreover, oxygen index and expansion index rise first then fall. When ATH/EG is 1:1, the oxygen index reaches the highest; the mechanical property of the silicone rubber is not affected under various environments such as acid, alkali, oily, artificial sea water environments, etc.
基金supported by Technical Center for High-Performance Valves from the Regional Innovation Center (RIC) Program of the Ministry of Knowledge Economy (MKE),Korea
文摘An approach for analyzing and optimizing sealing mechanism of ball valve made of nitrile butadiene rubber(NBR) with finite element method was presented. The Mooney-Rivlin hyperelastic material model was chosen to characterize NBR sealing, as it has been recommended in the similar applications. That is, NBR sealing was modeled as incompressible hyperelasticity, as well as the assumption of isotropic flow. The results illustrate the structural pressure and contact pressure on the contact surface, which shows that the NBR sealing mechanism is very suitable for sealing after dimension optimization.
文摘Rubber sealing strips with steel bones are used in car manufacturing that produced in large quantities. Cutting processes, such as milling and punching, are needed when the strips are produced. Accuracy, smoothness and flatness of the machined surface have to be guaranteed in the cutting process; moreover, deformation of the steel bone and peeling-off of the rubber must be avoided. Therefore cutting action of rubber/steel strips differs from that of rubber or metal workpiece separately. In this paper, milling and punching of rubber/steel strips were studied with the aim to increase the part quality of a production line for sealing strips of cars. Suitable cutting tools and fixtures are both necessary for cutting of the strips. The teeth of the milling saw should be made knife-edged and the cutting edge of the punching tool be inclined. Fixtures should be used to sustain the workpiece and resist deformation. By using of suitable tools and fixtures, high quality of rubber/steel sealing strips is achieved in the production line.
基金supported by the National Natural Science Foundation of China(No.52005470)the Natural Science Foundation of Zhejiang Province(No.LQ21E050020)the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.2021YW17),China.
文摘The nitrile butadiene rubber(NBR)hardness effect on the sealing characteristics of hydraulic O-ring rod seals is analyzed based on a mixed lubrication elastohydrodynamic model.Parameterized studies are conducted to reveal the mechanism of the influence of rubber hardness on the static and dynamic behavior of seals.The optimized selections of rubber hardness are then investigated under different conditions.Results show that the low hardness seal is prone to stress concentration due to the extrusion effect under high pressure conditions;it is also more prone to leaking.A high hardness seal can better prevent leakage by reducing film thickness but it will cause large frictional power loss and increase the probability of wear failure.The choice of low hardness is recommended to reduce friction with the premise that leakage requirements are met.
基金Project(51275102)supported by the National Natural Science Foundation of ChinaProject(159070220011)supported by the Science and Technology Innovative Research Programs Foundation of Harbin city,ChinaProject(HEUCF110702)supported by the Fundamental Research Funds for the Central Universities of China
文摘To solve the problem of sealing between the barrel and the rubber ring of shell body during an launching process of aerodynamic extinguishing cannon, a rubber sealing model with bionic dimpled characteristics was established based on the theory of bionic dimpled drag reduction and the principle of rubber sealing. In condition that the bionic dimpled characteristic diameters were 1, 2, 3, 4, and 5 mm, respectively, by numerical simulation, the influence of the installing compression of the rubber sealing ring on its surface stress and deformation was analyzed, and sealing performance of the rubber ring with different diameters of bionic dimpled was studied. The results show that the deformation of rubber ring appears prominent nonlinear characteristics when compression is increased from 1.5 mm to 2.5 ram. When the compression is 2.5 mm, the equivalent compression stress on the sealing areas of both sides of the rubber seal is greater than the working pressure of aerodynamic extinguishing cannon, which could meet the sealing requirement and would not cause leakage. So the rubber sealing ring with bionic dimpled surface possesses a good sealing characteristic and has no negative effect on the sealing of shell body; When the compression is 2.5 mm, the larger equivalent stress on the edge of sealing ring and the more even stress distribution in the high pressure area are generated due to the smaller compressive stress on the bionic dimple areas, which lays a foundation for the drag reduction characteristics of the shell body's rubber ring with bionic dimpled surface.