Taking the rubber torsion bushing of a certain type of all-terrain tracked vehicle as the research object,a theoretical model of torsional stiffness was proposed according to the non-linear characteristics of rubber c...Taking the rubber torsion bushing of a certain type of all-terrain tracked vehicle as the research object,a theoretical model of torsional stiffness was proposed according to the non-linear characteristics of rubber components and structural feature of the suspension. Simulations were carried out under different working conditions to obtain root mean square of vertical weighted acceleration as the evaluation index for ride performance of the all-terrain tracked vehicle,with a dynamics model of the whole vehicle based on the theoretical model of the torsional stiffness and standard road roughness as excitation input. Response surface method was used to establish the parametric optimization model of the torsional stiffness. The evaluation index showed that ride performance of the vehicle with optimized torsional stiffness model of suspension was improved compared with previous model fromexperiment. The torsional stiffness model of rubber bushing provided a theoretical basis for the design of the rubber torsion bushing in light tracked vehicles.展开更多
A metal rubber(MR) dry friction damper was designed based on the load supported by the rotor. An experimental apparatus for obtaining hysteresis loops of support under the precession load was designed. The elastic-d...A metal rubber(MR) dry friction damper was designed based on the load supported by the rotor. An experimental apparatus for obtaining hysteresis loops of support under the precession load was designed. The elastic-damping characteristics of the ring-shaped MR damper used as a rotor support under variable loads were presented by studying the hysteresis loops of the damper. The vibration rigidity and the energy dissipation coefficient were calculated from the hysteresis loops, based on the description of the deformation process of the MR element with simple structure in a dimensionless coordinating system. The calculation results showed that the energy dissipation coefficient in the inner of MR element and on the boundary between the damper and the frame of the rotor support were approximately equal. The comparison of the hysteresis loops for a precession load and a one-axial load indicated a large difference when the coefficient of the energy dissipation and the stiffness of the MR damper were concerned.展开更多
The pneumatic vibration isolator(PVI)plays an increasingly important role in precision manufacturing.In this paper,aiming to detect the performance of the pressure regulator in the PVI system,a PVI testing system with...The pneumatic vibration isolator(PVI)plays an increasingly important role in precision manufacturing.In this paper,aiming to detect the performance of the pressure regulator in the PVI system,a PVI testing system with a pressure regulator is designed and developed.Firstly,the structure of the pneumatic spring is presented and analyzed,and the nonlinear stiffness is obtained based on the ideal gas model and material mechanics.Then,according to the working principle and continuity equations of ideal airflow,a dynamic model of the PVI system with a pressure regulator is established.Through the simulation analysis,the vibration isolation performance is improved with the efficient and precise pressure regulator.The average values of both the vibration velocity and transmission rate decrease when the vibration is set to 4,10,20 and 40 Hz,respectively.The experiments demonstrate the reliability and effectiveness of the pressure regulator.This achievement will become an important basis for future research concerning precision manufacturing.展开更多
It is noted that any variation in operating conditions has a considerable effect on the tire/road interaction. Furthermore,choosing a range of proper values for carcass stiffness is very essential for both tire safety...It is noted that any variation in operating conditions has a considerable effect on the tire/road interaction. Furthermore,choosing a range of proper values for carcass stiffness is very essential for both tire safety and effective driving action. In this work,an elaborated 3D model fully compliant with the geometrical size of radial tire 185/60 R15 is worked up, for evaluating the effects of components properties and working conditions on deformation and stress/strain fields created inside the tire. For the simulation, the tire structure is assumed to be composed of tread, carcass ply, and bead. The mechanical behavior of rubber as main component of tire is described by Mooney-Rivlin material model. The comparison of the obtained results and laboratory tests demonstrates the validity and high accuracy of analysis.展开更多
This paper shows that the stiffness ofstyrene-butadiene solid rubber with added kaolin powder is related to the yield stress of kaolin dispersion in liquid polybutadiene rubber up to the percolation threshold. For fiv...This paper shows that the stiffness ofstyrene-butadiene solid rubber with added kaolin powder is related to the yield stress of kaolin dispersion in liquid polybutadiene rubber up to the percolation threshold. For five kinds of kaolin powder, the value of τ° spans the range of 100-430 Pa, while the corresponding compressive elastic constant of SBR varies from 12 to 21 MPa. A relationship between τ° and △E^i^*/ER^* is proposed. Critical examination of these data infers that kaolin powder dispersed in solid rubber matrix acts as an additive which decreases the random movement of the polybutadiene chains. Consequently, dispersions of nano-particles in liquid and in solid SBR are considered to be related, thus leading to a theological method for selecting nano-particles as fillers in solid SBR.展开更多
文摘Taking the rubber torsion bushing of a certain type of all-terrain tracked vehicle as the research object,a theoretical model of torsional stiffness was proposed according to the non-linear characteristics of rubber components and structural feature of the suspension. Simulations were carried out under different working conditions to obtain root mean square of vertical weighted acceleration as the evaluation index for ride performance of the all-terrain tracked vehicle,with a dynamics model of the whole vehicle based on the theoretical model of the torsional stiffness and standard road roughness as excitation input. Response surface method was used to establish the parametric optimization model of the torsional stiffness. The evaluation index showed that ride performance of the vehicle with optimized torsional stiffness model of suspension was improved compared with previous model fromexperiment. The torsional stiffness model of rubber bushing provided a theoretical basis for the design of the rubber torsion bushing in light tracked vehicles.
基金This project is supported by National Natural Science Foundation of China (No.50675042).
文摘A metal rubber(MR) dry friction damper was designed based on the load supported by the rotor. An experimental apparatus for obtaining hysteresis loops of support under the precession load was designed. The elastic-damping characteristics of the ring-shaped MR damper used as a rotor support under variable loads were presented by studying the hysteresis loops of the damper. The vibration rigidity and the energy dissipation coefficient were calculated from the hysteresis loops, based on the description of the deformation process of the MR element with simple structure in a dimensionless coordinating system. The calculation results showed that the energy dissipation coefficient in the inner of MR element and on the boundary between the damper and the frame of the rotor support were approximately equal. The comparison of the hysteresis loops for a precession load and a one-axial load indicated a large difference when the coefficient of the energy dissipation and the stiffness of the MR damper were concerned.
基金National Key Research and Development Project(Grant No.2021YFC0122502)Youth Fund of National Natural Science Foundation of China(Grant Nos.52105044,52105046).
文摘The pneumatic vibration isolator(PVI)plays an increasingly important role in precision manufacturing.In this paper,aiming to detect the performance of the pressure regulator in the PVI system,a PVI testing system with a pressure regulator is designed and developed.Firstly,the structure of the pneumatic spring is presented and analyzed,and the nonlinear stiffness is obtained based on the ideal gas model and material mechanics.Then,according to the working principle and continuity equations of ideal airflow,a dynamic model of the PVI system with a pressure regulator is established.Through the simulation analysis,the vibration isolation performance is improved with the efficient and precise pressure regulator.The average values of both the vibration velocity and transmission rate decrease when the vibration is set to 4,10,20 and 40 Hz,respectively.The experiments demonstrate the reliability and effectiveness of the pressure regulator.This achievement will become an important basis for future research concerning precision manufacturing.
文摘It is noted that any variation in operating conditions has a considerable effect on the tire/road interaction. Furthermore,choosing a range of proper values for carcass stiffness is very essential for both tire safety and effective driving action. In this work,an elaborated 3D model fully compliant with the geometrical size of radial tire 185/60 R15 is worked up, for evaluating the effects of components properties and working conditions on deformation and stress/strain fields created inside the tire. For the simulation, the tire structure is assumed to be composed of tread, carcass ply, and bead. The mechanical behavior of rubber as main component of tire is described by Mooney-Rivlin material model. The comparison of the obtained results and laboratory tests demonstrates the validity and high accuracy of analysis.
基金This work is part of a research program between the Univer-sity of Genoa and the Artigo S.p.A. under the contract 13/2007
文摘This paper shows that the stiffness ofstyrene-butadiene solid rubber with added kaolin powder is related to the yield stress of kaolin dispersion in liquid polybutadiene rubber up to the percolation threshold. For five kinds of kaolin powder, the value of τ° spans the range of 100-430 Pa, while the corresponding compressive elastic constant of SBR varies from 12 to 21 MPa. A relationship between τ° and △E^i^*/ER^* is proposed. Critical examination of these data infers that kaolin powder dispersed in solid rubber matrix acts as an additive which decreases the random movement of the polybutadiene chains. Consequently, dispersions of nano-particles in liquid and in solid SBR are considered to be related, thus leading to a theological method for selecting nano-particles as fillers in solid SBR.