Large strain fixed-end torsion of circular solid rubber bars is studied semi-analytically. The analyses are based on various non-Gaussian network models for rubber elasticity, some of which were proposed very recently...Large strain fixed-end torsion of circular solid rubber bars is studied semi-analytically. The analyses are based on various non-Gaussian network models for rubber elasticity, some of which were proposed very recently. Results are presented in terms of predicted torque vs. twist curves and axial force vs. twist curves. In some cases, the predicted stress distributions are also given. The sensitivity of the second-order axial force to the employed models is considered. The predicted results are compared with experimental results found in the literature.展开更多
This paper presents the results of finite element analysis of rubber structures based on novel strain energy functions stemming from the representation theorem of tensorial function. The stress tensor is represented b...This paper presents the results of finite element analysis of rubber structures based on novel strain energy functions stemming from the representation theorem of tensorial function. The stress tensor is represented by Taylor expansion, using the representation theorem of tensorial function of a single tensorial argument for all terms in each order of the expansion. The scalar-valued coefficient functions of the theorem are represented by the integrity bases of the strain tensor and material constants to be determined by experiment. The computer implementation of the new constitutive laws has been verified by comparing the FE results with analytical solutions. A complicated structure of rubber bearing was analyzed. The FE results show good correlation with experimental data.展开更多
Carbon nanotube (CNT) filled silicone rubber (SR) composites were synthesized by in situ polymerization.The effect of strain on the electrical resistance of the CNT/SR composites and the structure evolution of CNT...Carbon nanotube (CNT) filled silicone rubber (SR) composites were synthesized by in situ polymerization.The effect of strain on the electrical resistance of the CNT/SR composites and the structure evolution of CNT networks during tensile deformation were investigated.The results showed that the CNT/SR composites had high sensitivity of resistance-strain response.In a wide strain range (0-125%),the change of resistivity could reach 107,which was closely associated with the evolution process of the conductive CNT-network structure.The volume expansion of the composites in the tensile process led to a gradual decrease in the volume fraction of CNTs with the strain increase.When CNT loading was lower than the percolation threshold,CNT network was in disconnected state with a rapid increase in electrical resistance of the composites.Furthermore,the CNT loading had remarkable effect on the sensitivity of resistance-strain response in the composites.展开更多
The finite deformation and stress analyses for a rectangular plate with a center void and made of rubber with the Yeoh elastic strain energy function under uniaxial extension were studied in this paper. An approximati...The finite deformation and stress analyses for a rectangular plate with a center void and made of rubber with the Yeoh elastic strain energy function under uniaxial extension were studied in this paper. An approximation solution was obtained from the minimum potential energy principle. The numerical results for the growth of the cavitation and stresses along the edge of the cavitation were discussed. In addition, the stress concentration phenomenon was considered.展开更多
Nickel-coated graphite particles and two-component silicone-rubber were compounded to form a conductive composite system. The electrical volume resistivity of the composites were examined and compared under constant t...Nickel-coated graphite particles and two-component silicone-rubber were compounded to form a conductive composite system. The electrical volume resistivity of the composites were examined and compared under constant tensile strains, cyclic heating-cooling, electric field and repeated cyclic tensile strains in order to study the mechanism of electrical conductivity behaviors of the conductive composites under stress, temperature and current. The results showed that a peak value of the electrical resistivity appeared previously and then gradually increasing with increasing tensile strain. The electrical resistivity displayed positive temperature coefficient effect during the temperature increasing and decreasing. Applying 5A direct current to the conductive composites lesulted in an increase in the electrical resistance immediately, but no changes were detected under lower currents. Under the repeated cyclic strain, the peak value of the electrical resistivity of each cycle increased with the test cycle. All the electrical resistivity changes were attributed to the conductive networks broken-up and rebuilt in the conductive composites.展开更多
文摘Large strain fixed-end torsion of circular solid rubber bars is studied semi-analytically. The analyses are based on various non-Gaussian network models for rubber elasticity, some of which were proposed very recently. Results are presented in terms of predicted torque vs. twist curves and axial force vs. twist curves. In some cases, the predicted stress distributions are also given. The sensitivity of the second-order axial force to the employed models is considered. The predicted results are compared with experimental results found in the literature.
文摘This paper presents the results of finite element analysis of rubber structures based on novel strain energy functions stemming from the representation theorem of tensorial function. The stress tensor is represented by Taylor expansion, using the representation theorem of tensorial function of a single tensorial argument for all terms in each order of the expansion. The scalar-valued coefficient functions of the theorem are represented by the integrity bases of the strain tensor and material constants to be determined by experiment. The computer implementation of the new constitutive laws has been verified by comparing the FE results with analytical solutions. A complicated structure of rubber bearing was analyzed. The FE results show good correlation with experimental data.
基金Funded by Liaoning Education Department (No.LS2010128)the Scientific Research Fund of University of Jinan (No.XKY0901)
文摘Carbon nanotube (CNT) filled silicone rubber (SR) composites were synthesized by in situ polymerization.The effect of strain on the electrical resistance of the CNT/SR composites and the structure evolution of CNT networks during tensile deformation were investigated.The results showed that the CNT/SR composites had high sensitivity of resistance-strain response.In a wide strain range (0-125%),the change of resistivity could reach 107,which was closely associated with the evolution process of the conductive CNT-network structure.The volume expansion of the composites in the tensile process led to a gradual decrease in the volume fraction of CNTs with the strain increase.When CNT loading was lower than the percolation threshold,CNT network was in disconnected state with a rapid increase in electrical resistance of the composites.Furthermore,the CNT loading had remarkable effect on the sensitivity of resistance-strain response in the composites.
文摘The finite deformation and stress analyses for a rectangular plate with a center void and made of rubber with the Yeoh elastic strain energy function under uniaxial extension were studied in this paper. An approximation solution was obtained from the minimum potential energy principle. The numerical results for the growth of the cavitation and stresses along the edge of the cavitation were discussed. In addition, the stress concentration phenomenon was considered.
基金Funded by Wuhan Science and Technology Bureau (No.200710321090-18)
文摘Nickel-coated graphite particles and two-component silicone-rubber were compounded to form a conductive composite system. The electrical volume resistivity of the composites were examined and compared under constant tensile strains, cyclic heating-cooling, electric field and repeated cyclic tensile strains in order to study the mechanism of electrical conductivity behaviors of the conductive composites under stress, temperature and current. The results showed that a peak value of the electrical resistivity appeared previously and then gradually increasing with increasing tensile strain. The electrical resistivity displayed positive temperature coefficient effect during the temperature increasing and decreasing. Applying 5A direct current to the conductive composites lesulted in an increase in the electrical resistance immediately, but no changes were detected under lower currents. Under the repeated cyclic strain, the peak value of the electrical resistivity of each cycle increased with the test cycle. All the electrical resistivity changes were attributed to the conductive networks broken-up and rebuilt in the conductive composites.