We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey s...We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.展开更多
To further develop EST-SSR marker in rubber tree, we assembled the sequences downloaded from NCBI and Malaysia EST databases of rubber tree. By analyzing the assembled 3 733 unigenes, we identified 566 potential SSR s...To further develop EST-SSR marker in rubber tree, we assembled the sequences downloaded from NCBI and Malaysia EST databases of rubber tree. By analyzing the assembled 3 733 unigenes, we identified 566 potential SSR sites in this study. That is to say, there was one EST-SSR in every 3.96 kb. The di-nu-cleotide repeat was the most abundant type, fol owed by tri-, hexa-, tetra- and pen-ta-nucleotide repeat. The most common number of repeat units was 5, fol owed by more than 12, 6 and 7. Of 51 SSR motifs identified in this study, di-, tri-, tetra-, penta- and hexa-nucleotide repeats were 6, 26, 5, 3 and 11 types, respectively. The GA/CT di-nucleotide repeat was the most abundant motif, fol owed by TC/AG, AT/TA, CTT/GAA, TTC/AAG and TCT/AGA. In total, 158 new EST-SSRs were developed and amplified with the DNA of RRIM600 as a template. The results showed that the PCR products of 99 EST-SSRs generated clear amplifying bands. The EST-SSR markers developed in this study further enrich the number of molecular marker in rubber tree, and they wil be widely applied in DNA fingerprinting, genetic diversity, marker-assisted selection and genetic mapping, etc.展开更多
[Objective]To elucidate the role of ethylene(ET),a latex yield stimulant of the rubber tree,on the sieve tube(ST)transport efficiency of materials(especially sucrose)needed for natural rubber biosynthesis.[Method]Rubb...[Objective]To elucidate the role of ethylene(ET),a latex yield stimulant of the rubber tree,on the sieve tube(ST)transport efficiency of materials(especially sucrose)needed for natural rubber biosynthesis.[Method]Rubber tree seedlings were treated with ET solution or water which was used as a control on the bark,and latex samples and ST tissue samples were collected for proteomic analyses and latex sucrose content determination respectively.[Results]After ET treatment,the sucrose content of the latex was found significantly decreased.A total of 66 ethylene-responsive proteins(ERPs)were distinguished by two-dimensional gel electrophoresis(2-DE),and 54 were successfully identified by MALDI-TOF/TOF and database searching.The majority of these ERPs were involved in carbohydrate transport and metabolic processes in the ST.[Conclusion]Our findings suggest that the application of ET may increase the transport efficiency of the ST and that the application of ET promotes the consumption of energy and sucrose in the ST.展开更多
Rubber[Hevea brasiliensis(Willd.ex A.Juss.)Müll.Arg.]plantations are the largest cultivated forest type in tropical China.Returning organic materials to the soil will help to maintain the quality and growth of ru...Rubber[Hevea brasiliensis(Willd.ex A.Juss.)Müll.Arg.]plantations are the largest cultivated forest type in tropical China.Returning organic materials to the soil will help to maintain the quality and growth of rubber trees.Although many studies have demonstrated that organic waste materials can be used to improve soil fertility and structure to promote root growth,few studies have studied the eff ects of organic amendments on soil fertility and root growth in rubber tree plantations.Here,bagasse,coconut husk or biochar were applied with a chemical fertilizer to test their eff ects on soil properties after 6 months and compared with the eff ects of only the chemical fertilizer.Results showed that the soil organic matter content,total nitrogen,available phosphorus and available potassium after the chemical fertilizer(F)treatment were all signifi cantly lower than after the chemical fertilizer+bagasse(Fba),chemical fertilizer+coconut husk(Fco)or chemical fertilizer+biochar(Fbi)(p<0.05).Soil pH in all organic amendments was higher than in the F treatment,but was only signifi cantly higher in the Fbi treatment.In contrast,soil bulk density in the F treatment was signifi cantly higher than in treatments with the organic amendments(p<0.05).When compared with the F treatment,soil root dry mass increased signifi-cantly by 190%,176%and 33%in Fba,Fco and Fbi treatments,respectively(p<0.05).Similar results were found for root activity,number of root tips,root length,root surface area and root volume.Conclusively,the application of bagasse,coconut husk and biochar increased soil fertility and promoted root growth of rubber trees in the short term.However,bagasse and coconut husk were more eff ective than biochar in improving root growth of rubber trees.展开更多
The rubber-containing waste materials have been widely used to improve the engineering properties of soils in recent years.Among others,granular rubbers are utilized in various ways to increase the bearing capacity an...The rubber-containing waste materials have been widely used to improve the engineering properties of soils in recent years.Among others,granular rubbers are utilized in various ways to increase the bearing capacity and shear strength and to reduce the settlement and liquefaction potential of soils.The granular rubbers have many advantages such as temperature resistance,flexibility,tear-resistance,non-slip,and thermal and electrical insulation.This study presents the distribution characteristics of five different types of clayey soils with different engineering properties containing waste rubber particles(WRPs).On the other hand,determining and controlling the dispersion characteristics of clayey soils is two significant engineering problems.The study aims to solve these two remarkable and problematic issues in an eco-friendly and safe way.The role of WRP treatment in the investigation of soil dispersion behavior,which can cause dangerous problems such as piping,erosion,and dispersion,reflects the original and different perspectives of this study.Within this scope,geotechnical parameters of the clayey soils were determined.Subsequently,pinhole test,crumb test,double hydrometer test,and scanning electron microscopy(SEM)analysis were performed on the Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin,and Afyon clay samples with different percentages of WRPs(0%,5%,10%,and 15%).Consequently,Avanos and Ukrainian kaolin clays gave the most limited response to the dispersion behavior with the addition of WRP.Also,WRP treatment on the ball clay and bentonite samples showed limited efficiency.Afyon clay,which was defined as dispersive by the three tests that determined its dispersion potential,showed 3 level changes in the pinhole tests and 2 level changes in the crumb tests,and gave the most effective results in terms of WRP efficiency.展开更多
Two highly cross-linked superfine styrene-butadiene rubber particles, one with 1 wt% of carboxyl groups and theother without such groups having particle sizes of 130-150 nm and 80-100 nm respectively, were used to pre...Two highly cross-linked superfine styrene-butadiene rubber particles, one with 1 wt% of carboxyl groups and theother without such groups having particle sizes of 130-150 nm and 80-100 nm respectively, were used to prepare nylon6/rubber composites via in situ polymerization. It was found that carboxylic styrene-butadiene dispersed uniformly in nylonmatrix and there was strong interfacial interaction because of the graft polymer formed by the reaction of nylon with carboxylgroup of the rubber, resulting in considerably improved impact strength with almost unchanged tensile strength. However,the addition of styrene-butadiene without carboxyl groups showed intensive agglomeration of the rubber particles and weakinterfacial interactions, and the toughness of the materials was improved slightly. The crystallization and rheological behavior of the composites were also discussed.展开更多
According to the present theories of plastic toughening, it is impossible to enhance the toughness, stiffness and/orheat resistance of plastics simultaneously by using rubber. A series of novel nano-rubber particles (...According to the present theories of plastic toughening, it is impossible to enhance the toughness, stiffness and/orheat resistance of plastics simultaneously by using rubber. A series of novel nano-rubber particles (UFPR) were introduced,which were prepared through irradiating common rubber lattices and spray drying them. Epoxies toughened with UFPRshowed a much better toughening effect than those with CTBN, and the heat resistance of epoxy was unexpectedly elevated.For polypropylene toughening, UFPR can improve the toughness, stiffness and heat resistance of PP simultaneously. Thesespecial toughening effects overcome the deficiencies in rubber toughening technology and are worth further investigating.展开更多
In many parts of mainland Southeast Asia rubber plantations are expanding rapidly in areas where the crop was not historically found. Monitoring and mapping the distribution of rubber trees in the region is necessary ...In many parts of mainland Southeast Asia rubber plantations are expanding rapidly in areas where the crop was not historically found. Monitoring and mapping the distribution of rubber trees in the region is necessary for developing a better understanding of the consequences of land-cover and land-use change on carbon and water cycles. In this study, we conducted rubber tree growth mapping in Northeast Thailand using Landsat 5 TM data. A Mahalanobis typicality method was used to identify different age rubber trees. Landsat 5 TM 30 m non-thermal reflective bands, NDVI and tasseled cap transformation components were selected as the model input metrics. The validation was carried out using provincial level agricultural statistical data on the rubber tree growth area. At regional (Northeast Thailand) and provincial scales, the estimates of mature and middle-age rubber stands produced from 30 m Landsat 5 TM data compared well (high statistical significance) with the provincial rubber tree growth statistical data.展开更多
Microorganism plays an irreplaceable role in litter decomposition,and the dynamics of microbial activity in litter is of ecological significance in understanding the mechanism of litter decomposition. Therefore,the dy...Microorganism plays an irreplaceable role in litter decomposition,and the dynamics of microbial activity in litter is of ecological significance in understanding the mechanism of litter decomposition. Therefore,the dynamic characteristics of microorganism in rubber litter decomposition were studied during 300 and 240 days by mesh bag method under different control measures in plantations. And the results were as following:(1) Microbial populations were closely related to litter residues and decomposition environments. The microbial population has been rising firstly and then falling on the ground but directly dropping under the ground by time.(2) Microbial populations under different environments as follows:0.07 mm aperture of mesh bag > 1 mm aperture of mesh bag,non-fertile hole > fertile hole,underground group > ground group. During the entire process of decomposition,the quantity of bacteria holed absolute superiority,then actinomycetes,finally fungi.(3) Through the correlation analysis,the total number of bacteria,fungi and microorganism in aboveground group was significantly associated with the decomposition rate,but there was little correlation to actinomycetes. It's suggested that fungi and bacteria are the main participants in litter decomposition on the ground. In underground group,the microbial groups were significantly or extremely significantly related to the dry weight of residues,but was not correlated to decomposition rate significantly,which suggested that litter provided food for underground microbes,and litter decomposition was more dependent on comprehensive effect of microbes,soil animals and soil environments.展开更多
The rubber tree Hevea brasiliensis(Willd.Ex Adr.De Juss.)Müell Arg.]is an important source of latex for the production natural rubber.Natural rubber is an important biopolymer used in various industries,but aspec...The rubber tree Hevea brasiliensis(Willd.Ex Adr.De Juss.)Müell Arg.]is an important source of latex for the production natural rubber.Natural rubber is an important biopolymer used in various industries,but aspects related to hormonal regulation in biosynthesis are still unknown,which would allow optimizing its production.We review the molecular and physiological mechanisms of increases latex regeneration and flow by the stimulation of rubber trees with exogenous applications of ethylene and jasmonate.We found that the increase in latex regeneration by ethylene is due to the increase in gene level expression and enzymatic activity of key photosynthesis and glycolysis enzymes for the generation of precursors in the first phase of rubber biosynthesis.Latex flow is supported by up-regulated genes in sucrose metabolism such as invertases,induction of sucrose transporters(SUT),and aquaporins(PIP)to maintain flow and turgor pressure in laticifers.Meanwhile,the increase in latex yield mediated by jasmonate may be due to the induction of laticifer differentiation in the long term and in the short term be mediated by the induction of small rubber particles(SRPP)as non-enzymatic cofactors in the production of latex.This information contributes to the knowledge of latex biosynthesis,which allows for a greater support for the exogenous application of jasmonates and ethylene to regulate its production.展开更多
The rubber tree,Hevea brasiliensis,produces natural rubber that serves as an essential industrial raw material.Here,we present a high-quality reference genome for a rubber tree cultivar GT1 using single-molecule real-...The rubber tree,Hevea brasiliensis,produces natural rubber that serves as an essential industrial raw material.Here,we present a high-quality reference genome for a rubber tree cultivar GT1 using single-molecule real-time sequencing(SMRT)and Hi-C technologies to anchor the~1.47-Gb genome assembly into 18 pseudochromosomes.The chromosome-based genome analysis enabled us to establish a model of spurge chromosome evolution,since the common paleopolyploid event occurred before the split of Hevea and Manihot.We show recent and rapid bursts of the three Hevea-specific LTR-retrotransposon families during the last 10 million years,leading to the massive expansion by~65.88%(~970 Mbp)of the whole rubber tree genome since the divergence from Manihot.We identify large-scale expansion of genes associated with whole rubber biosynthesis processes,such as basal metabolic processes,ethylene biosynthesis,and the activation of polysaccharide and glycoprotein lectin,which are important properties for latex production.A map of genomic variation between the cultivated and wild rubber trees was obtained,which contains~15.7 million high-quality single-nucleotide polymorphisms.We identified hundreds of candidate domestication genes with drastically lowered genomic diversity in the cultivated but not wild rubber trees despite a relatively short domestication history of rubber tree,some of which are involved in rubber biosynthesis.This genome assembly represents key resources for future rubber tree research and breeding,providing novel targets for improving plant biotic and abiotic tolerance and rubber production.展开更多
Corynespora cassiicola is the causal agent of Corynespora Leaf Fall(CLF)disease.CLF is one of the most important fungal diseases of rubber trees in Asia and Africa but disease outbreaks have not been reported in South...Corynespora cassiicola is the causal agent of Corynespora Leaf Fall(CLF)disease.CLF is one of the most important fungal diseases of rubber trees in Asia and Africa but disease outbreaks have not been reported in South America.Cassiicolin,a small cysteine-rich glycoprotein secreted by the pathogenic C.cassiicola isolate CCP,was previously identified as a potential disease effector in rubber tree.Recently,the cassiicolin-encoding gene(Cas1)was characterized and shown to be expressed in the early phase of infection.In this study,we investigated whether previously undetected strains of C.cassiicola are present in South American rubber plantations by examining the fungal endophyte population found in asymptomatic rubber tree leaves.Four isolates were identified as C.cassiicola.Genes encoding new forms of the cassiicolin precursor protein(Cas3 and Cas4)were identified from these isolates.Three of four isolates were able to induce symptoms on the cultivar they were isolated from in a detached leaf assay,with different kinetics and intensities.One isolate had the same pathogenicity profile as the pathogenic isolate CCP;the other two isolates developed symptoms late during the course of infection,suggesting saprotrophic capabilities.However,no Cas3 or Cas4 transcripts could be detected upon inoculation with the endophytic isolates,whereas the reference gene Cas1 was expressed upon inoculation with the CCP isolate.This work demonstrated that C.cassiicola is present in South America in an endophytic form and that it may evolve from an endophytic to a saprophytic or even potentially pathogenic life style.展开更多
Hevein, a lectin_like protein, is a major factor of lutoids in the latex of rubber trees ( Hevea brasiliensis Muell._Arg.). This factor is involved in coagulation of the latex and has the ability to bind chitin. Th...Hevein, a lectin_like protein, is a major factor of lutoids in the latex of rubber trees ( Hevea brasiliensis Muell._Arg.). This factor is involved in coagulation of the latex and has the ability to bind chitin. The hevein gene with a length of 680 bp was cloned by the method of RT_PCR. Its promoter region with 1 306 bp of this gene was also isolated by genome walking, and its sequence included the typical TATA and CAAT boxes as well as the homologous sequence of abscisic acid (ABA) response elements. Expression of the hevein gene in the latex and leaves was detected by Northern blot. After treatment of the trees with ethylene and ABA, the results showed that the hevein gene was expressed principally in latex, and the expression could be induced by ethylene and ABA.展开更多
In this paper,work was conducted to reveal electrical tree behaviors(initiation and propagation)of silicone rubber(SIR) under an impulse voltage with high temperature.Impulse frequencies ranging from 10 Hz to 1 k ...In this paper,work was conducted to reveal electrical tree behaviors(initiation and propagation)of silicone rubber(SIR) under an impulse voltage with high temperature.Impulse frequencies ranging from 10 Hz to 1 k Hz were applied and the temperature was controlled between 30 °C and 90 °C.Experimental results show that tree initiation voltage decreases with increasing pulse frequency,and the descending amplitude is different in different frequency bands.As the pulse frequency increases,more frequent partial discharges occur in the channel,increasing the tree growth rate and the final shape intensity.As for temperature,the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher.Based on differential scanning calorimetry results,we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage.However,the tree growth rate decreases with increasing temperature.Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis.Different tree growth models considering tree channel characteristics are proposed.It is believed that increasing the conductivity in the tree channel restrains the partial discharge,holding back the tree growth at high temperature.展开更多
Existing plant types of rubber tree after planting and available tapping tree were investigated, and there were about 28 rubber plantations with different tapping years of 8 varieties “CATAS7-33-97”, “CATAS8-79”, ...Existing plant types of rubber tree after planting and available tapping tree were investigated, and there were about 28 rubber plantations with different tapping years of 8 varieties “CATAS7-33-97”, “CATAS8-79”, “CATAS7-20-59”, “PR107”, “RRIM600”, “GT1”, “INA873”, “93-114”in South China. The results showed that there were six kinds of existing plant types of rubber tree after planting of rubber plantations, which were available tapping trees, wind damaged trees, cold damaged trees, tapping panel dryness trees, absent trees and weak trees, respectively. These data investigated also showed rubber trees under available tapping, stoppage due to tapping panel dryness, absence, wind damage, cold damage and weakness were counted and calculated and made up for 72.21%, 14.75%, 5.61%, 3.86%, 2.68% and 1.89%. Tapping panel dryness trees, wind damage and absent trees are major factors for the loss of tapping rubber trees in the rubber plantations. Of these investigated varieties, available tapping trees per 100 trees of rubber plantation of “PR107”at the 1st, 12th, 14th, 16th, 20th, 24th tapping year were 96, 67, 70, 75, 66, 46 trees in Hainan planting zone, respectively. Available tapping trees per 100 trees of rubber plantation of “RRIM600”at the 9th, 15th, 20th, 22nd tapping year were 88, 62, 55, 36 trees in Yunnan planting zone, respectively. Available tapping trees per 100 trees of rubber plantation of “93-114” at the 10th, 19th, tapping year were 94, 62 trees in Guangdong planting zone. These results showed that available tapping trees of rubber plantation decreased with increasing tapping age under different planting zones in China.展开更多
[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to...[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to evaluate the ecological benefits of rubber plantations and provide basic data for studying the effect of tropical land utilization/cover change on the global carbon and nitrogen cycle. [Method]The situs was in Danzhou city,western region of Hainan Island,and the samples were four kinds of rubber plantations soil at different ages and one kind of control check (pepper,Piper nigrum L.) soil. In this research,four quadrats were set up in each sample,and the size of each was 20 cm×20 cm. Four specimens were gathered from four layers of 0-15,15-30,30-45,45-60,and the average of them was the last analysis result of each sample. Soil density was measured by cutting ring method,soil containing and hygroscopic water was detected by oven drying method,soil organic carbon (SOC) was measured by low temperature heated outside potassium dichromate oxidation-colorimetry method,and soil total nitrogen (STN) was detected by semimicro Kjeldahl method. [Result]SOC contents of different layers in rubber plantations soil at different age stages (including the CK pepper soil,the same as below) varied little,and the content of SOC in surface layer (0-15 cm) was higher,while the underlayer (45-60 cm) was lower than the average value; there was significant difference in SOC content among different kinds of soil,and the content was of 6.03-7.78 g/kg,tapping young trees (7 years) CK pepper mature age trees (30 years) prophase of young trees (2 years) tapping trees (16 years); there was no significant difference in SOC storage among different kinds of soil,and the storage was of 61.33-74.29 t/hm2,mature age trees (30 years) tapping young trees (7 years) prophase of young trees (2 years) CK pepper tapping trees (16 years); there was significant difference in STN content among rubber plantations soil at different age stages,the content was of 410.86-664.14 mg/kg2,CK pepper tapping young trees (7 years) prophase of young trees (2 years) mature age trees (30 years) tapping trees (16 years),and STN content of tapping trees (16 years) soil was extremely lowest; there was significant difference in C/N ratio among different kinds of soil,the ratio was of 10.94-14.47,and the ratio of tapping trees (16 years) mature age trees (30 years) tapping young trees (7 years) CK pepper prophase of young trees (2 years). [Conclusion]There wasn't unhealthy effect of rubber trees planted in tropical area on the content and storage of SOC,the content of STN and the ratio of C/N. there was no significant difference between rubber plantations and CK pepper soil,and the effects of rubber plantation on soil carbon-nitrogen was similar to that of other tropical crops (such as pepper).展开更多
The leaf phenology of trees has received particular attention for its crucial role in the global water and carbon balances,ecosystem,and species distribution.However,current studies on leaf phenology have mainly focus...The leaf phenology of trees has received particular attention for its crucial role in the global water and carbon balances,ecosystem,and species distribution.However,current studies on leaf phenology have mainly focused on temperate trees,while few studies including tropical trees.Little attention has been paid to globally extensive industrial plantations.Rubber plantations are important to both the local and global economies.In this study,we investigated the legacy effects of defoliation phenology on the following year’s leaf flushing,leaf disease,and also latex yield of rubber trees,an economically important tree to local people and the world.Results show that extended duration of defoliation increased the subsequent duration of refoliation and rates of infection by powdery mildew disease,but led to reduced latex yield in March.This legacy effect of rubber defoliation may relate to the carbohydrate reserved in the trees.A longer duration of defoliation would consume more reserved carbohydrates,reducing available reserves for disease defense and latex production.Extended duration of defoliation period was associated with either a lower temperature before the cessation of latex tapping in October-November and/or a higher temperature after the cessation of latex tapping in December-January.Leaf falling signals the end of photosynthetic activities in deciduous trees.Thus,the leaf falling phenology will impact ecological processes involving rubber trees.Our findings indicated that the inclusion of defoliation periods in future rubber trees’ research,will be crucial to furthering our understanding of leaf flushing,powdery mildew disease,and latex yield.展开更多
Agroforestry ecosystems are constructed by simulating natural ecosystems, applying the principles of symbiosis in nature, and organizing multiple plant populations to coexist, while conducting targeted cultivation and...Agroforestry ecosystems are constructed by simulating natural ecosystems, applying the principles of symbiosis in nature, and organizing multiple plant populations to coexist, while conducting targeted cultivation and structural control scientifically. Rubber agroforestry complex ecosystems aim for sustainable development in terms of industry, ecology, resource utilization, and the livelihoods of producers. Rubber agroforestry complex ecosystems create a complex production structure system that integrates biology, society, and the economy through species combinations. Rubber trees and associated biological components coordinate with each other, mutually promote growth, and yield a variety of products for producers. Cultivation techniques and patterns of rubber agroforestry are essential components of these ecosystems. This study analyzes the production practices of rubber agroforestry complex cultivation, with a focus on the development and characteristics (complexity, systematicity, intensity, and hierarchy) of rubber agroforestry systems using a literature analysis and a survey approach. It explores the types and scales of complex planting, specifications and forms, and major effects of complex cultivation. This study identifies successful rubber agroforestry cultivation patterns and practical techniques, as well as the potential benefits of developing rubber agroforestry cultivation. It also points out the shortcomings in the development of complex planting, including an emphasis on production practices but insufficient theoretical research, a focus on production but inadequate attention to the market, and an emphasis on yield while overlooking the improvement of standards, brands, and added value. There are various complex patterns for young rubber plantations, but relatively fewer for mature plantations. Based on this analysis, this study suggests that future efforts should focus on in-depth research on interspecies and environmental interactions in rubber agroforestry ecosystems, clearly define key roles, accelerate the innovation of development patterns, and strengthen the foundation for development. It recommends promoting and demonstrating successful rubber agroforestry complex patterns and providing technical training, developing product branding for rubber agroforestry patterns, enhancing product value, expanding the application functions of rubber-forest mixed crop products, and establishing a stable and sustainable industry chain. This study provide practical experience and theoretical insights in rubber agroforestry complex systems from China the potential to enrich the knowledge of rubber agroforestry composite systems, provide practical experience to improve the operating income of smallholders, and even promote the sustainable development of rubber plantations.展开更多
Traditional techniques for treatment of waste rubber, such as burning, generate some highly non- degradable synthetic materials that cause unrepairable environmental damages by releasing heavy metals, such as arsenic,...Traditional techniques for treatment of waste rubber, such as burning, generate some highly non- degradable synthetic materials that cause unrepairable environmental damages by releasing heavy metals, such as arsenic, chromium, lead, manganese and nickel. For this, scrap tires are used as light- weight alternative materials in many engineering applications, such as retaining wall backfilling. In the present study, 90 laboratory models were prepared to evaluate the stability of mechanically stabilized earth (MSE) walls with plate anchors. Then, the bearing capacity and horizontal displacements of the retaining walls were monitored by exerting a static loading to investigate the effects of adding different contents (5 wt%, 10 wt%, 15 wt% and 20 wt%) of recycled crumb rubber (RCR) to the fill of a mechanically stabilized retaining wall with plate anchors. To visualize the critical slip surface of the wall, the particle image velocimetry (PIV) technique was employed. Results showed that the circular anchor plates almost continually provided a higher bearing capacity and wall stability than the square plates. Moreover, the backfill with 15 wt% RCR provided the maximum bearing capacity of the wall. Increasing the weight percentage of RCR to 20 wt% resulted in a significant reduction in horizontal displacement of the wall, which occurred due to the decrease in lateral earth pressure against the whole walls. An increase in RCR content resulted in the decrease in the formation of failure wedge and the expansion of the wall slip surface, and the failure wedge did not form in the sand mixtures with 15 wt% and 20 wt% RCRs.展开更多
Rocks are composed of mineral particles and micropores between mineral which has a great influence on the mechanical properties of rocks. In this paper, based on the theory of locked-in stress developed by academician...Rocks are composed of mineral particles and micropores between mineral which has a great influence on the mechanical properties of rocks. In this paper, based on the theory of locked-in stress developed by academician Chen Zongji, the locked-in stress problem in underground rock is simulated by the thermal expansion of hard rubber particles. The pore inclusion in rock is assumed to be uniformly distributed spherical cavities. Using the thermal stress theory, the stress of rock with a spherical pore inclusion is equivalent to the thermal stress generated by the spherical hard rubber inclusion. The elastic theory formula of the temperature increment and the equivalent pore pressure of the spherical hard rubber inclusion is derived. The numerical simulation of the rock mass model with a spherical hard rubber inclusion is carried out and compared to the theoretical calculation results<span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:zh-cn;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"="">;</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:en-us;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"=""> the results show that they are consistent. The method proposed by this paper for simulating stress distribution in rock by thermal stress is reasonable and feasible</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:zh-cn;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"="">;</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:en-us;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"=""> it has a positive meaning for further study of mechanic phenomenon of rock with micropore inclusion.</span>展开更多
文摘We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.
基金Supported by the Fundamental Scientific Research Funds for Chinese Academy of Tropical Agricultural Sciences(1630022013028)National Natural Science Foundation of China(30960310,31200514,31270651)~~
文摘To further develop EST-SSR marker in rubber tree, we assembled the sequences downloaded from NCBI and Malaysia EST databases of rubber tree. By analyzing the assembled 3 733 unigenes, we identified 566 potential SSR sites in this study. That is to say, there was one EST-SSR in every 3.96 kb. The di-nu-cleotide repeat was the most abundant type, fol owed by tri-, hexa-, tetra- and pen-ta-nucleotide repeat. The most common number of repeat units was 5, fol owed by more than 12, 6 and 7. Of 51 SSR motifs identified in this study, di-, tri-, tetra-, penta- and hexa-nucleotide repeats were 6, 26, 5, 3 and 11 types, respectively. The GA/CT di-nucleotide repeat was the most abundant motif, fol owed by TC/AG, AT/TA, CTT/GAA, TTC/AAG and TCT/AGA. In total, 158 new EST-SSRs were developed and amplified with the DNA of RRIM600 as a template. The results showed that the PCR products of 99 EST-SSRs generated clear amplifying bands. The EST-SSR markers developed in this study further enrich the number of molecular marker in rubber tree, and they wil be widely applied in DNA fingerprinting, genetic diversity, marker-assisted selection and genetic mapping, etc.
基金Supported by the Central Public-interest Scientific Institution Basal Research Fund(1630022015003)the National Natural Science Foundation of China(31270651,31570684)~~
文摘[Objective]To elucidate the role of ethylene(ET),a latex yield stimulant of the rubber tree,on the sieve tube(ST)transport efficiency of materials(especially sucrose)needed for natural rubber biosynthesis.[Method]Rubber tree seedlings were treated with ET solution or water which was used as a control on the bark,and latex samples and ST tissue samples were collected for proteomic analyses and latex sucrose content determination respectively.[Results]After ET treatment,the sucrose content of the latex was found significantly decreased.A total of 66 ethylene-responsive proteins(ERPs)were distinguished by two-dimensional gel electrophoresis(2-DE),and 54 were successfully identified by MALDI-TOF/TOF and database searching.The majority of these ERPs were involved in carbohydrate transport and metabolic processes in the ST.[Conclusion]Our findings suggest that the application of ET may increase the transport efficiency of the ST and that the application of ET promotes the consumption of energy and sucrose in the ST.
文摘Rubber[Hevea brasiliensis(Willd.ex A.Juss.)Müll.Arg.]plantations are the largest cultivated forest type in tropical China.Returning organic materials to the soil will help to maintain the quality and growth of rubber trees.Although many studies have demonstrated that organic waste materials can be used to improve soil fertility and structure to promote root growth,few studies have studied the eff ects of organic amendments on soil fertility and root growth in rubber tree plantations.Here,bagasse,coconut husk or biochar were applied with a chemical fertilizer to test their eff ects on soil properties after 6 months and compared with the eff ects of only the chemical fertilizer.Results showed that the soil organic matter content,total nitrogen,available phosphorus and available potassium after the chemical fertilizer(F)treatment were all signifi cantly lower than after the chemical fertilizer+bagasse(Fba),chemical fertilizer+coconut husk(Fco)or chemical fertilizer+biochar(Fbi)(p<0.05).Soil pH in all organic amendments was higher than in the F treatment,but was only signifi cantly higher in the Fbi treatment.In contrast,soil bulk density in the F treatment was signifi cantly higher than in treatments with the organic amendments(p<0.05).When compared with the F treatment,soil root dry mass increased signifi-cantly by 190%,176%and 33%in Fba,Fco and Fbi treatments,respectively(p<0.05).Similar results were found for root activity,number of root tips,root length,root surface area and root volume.Conclusively,the application of bagasse,coconut husk and biochar increased soil fertility and promoted root growth of rubber trees in the short term.However,bagasse and coconut husk were more eff ective than biochar in improving root growth of rubber trees.
基金supported by the Scientific Research Project of Aksaray University(Grant No.BAP-2021-31).
文摘The rubber-containing waste materials have been widely used to improve the engineering properties of soils in recent years.Among others,granular rubbers are utilized in various ways to increase the bearing capacity and shear strength and to reduce the settlement and liquefaction potential of soils.The granular rubbers have many advantages such as temperature resistance,flexibility,tear-resistance,non-slip,and thermal and electrical insulation.This study presents the distribution characteristics of five different types of clayey soils with different engineering properties containing waste rubber particles(WRPs).On the other hand,determining and controlling the dispersion characteristics of clayey soils is two significant engineering problems.The study aims to solve these two remarkable and problematic issues in an eco-friendly and safe way.The role of WRP treatment in the investigation of soil dispersion behavior,which can cause dangerous problems such as piping,erosion,and dispersion,reflects the original and different perspectives of this study.Within this scope,geotechnical parameters of the clayey soils were determined.Subsequently,pinhole test,crumb test,double hydrometer test,and scanning electron microscopy(SEM)analysis were performed on the Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin,and Afyon clay samples with different percentages of WRPs(0%,5%,10%,and 15%).Consequently,Avanos and Ukrainian kaolin clays gave the most limited response to the dispersion behavior with the addition of WRP.Also,WRP treatment on the ball clay and bentonite samples showed limited efficiency.Afyon clay,which was defined as dispersive by the three tests that determined its dispersion potential,showed 3 level changes in the pinhole tests and 2 level changes in the crumb tests,and gave the most effective results in terms of WRP efficiency.
文摘Two highly cross-linked superfine styrene-butadiene rubber particles, one with 1 wt% of carboxyl groups and theother without such groups having particle sizes of 130-150 nm and 80-100 nm respectively, were used to prepare nylon6/rubber composites via in situ polymerization. It was found that carboxylic styrene-butadiene dispersed uniformly in nylonmatrix and there was strong interfacial interaction because of the graft polymer formed by the reaction of nylon with carboxylgroup of the rubber, resulting in considerably improved impact strength with almost unchanged tensile strength. However,the addition of styrene-butadiene without carboxyl groups showed intensive agglomeration of the rubber particles and weakinterfacial interactions, and the toughness of the materials was improved slightly. The crystallization and rheological behavior of the composites were also discussed.
基金This work was financially supported by the Special Funds for Major State Basic Research Projects of China (No. G1999064800).
文摘According to the present theories of plastic toughening, it is impossible to enhance the toughness, stiffness and/orheat resistance of plastics simultaneously by using rubber. A series of novel nano-rubber particles (UFPR) were introduced,which were prepared through irradiating common rubber lattices and spray drying them. Epoxies toughened with UFPRshowed a much better toughening effect than those with CTBN, and the heat resistance of epoxy was unexpectedly elevated.For polypropylene toughening, UFPR can improve the toughness, stiffness and heat resistance of PP simultaneously. Thesespecial toughening effects overcome the deficiencies in rubber toughening technology and are worth further investigating.
文摘In many parts of mainland Southeast Asia rubber plantations are expanding rapidly in areas where the crop was not historically found. Monitoring and mapping the distribution of rubber trees in the region is necessary for developing a better understanding of the consequences of land-cover and land-use change on carbon and water cycles. In this study, we conducted rubber tree growth mapping in Northeast Thailand using Landsat 5 TM data. A Mahalanobis typicality method was used to identify different age rubber trees. Landsat 5 TM 30 m non-thermal reflective bands, NDVI and tasseled cap transformation components were selected as the model input metrics. The validation was carried out using provincial level agricultural statistical data on the rubber tree growth area. At regional (Northeast Thailand) and provincial scales, the estimates of mature and middle-age rubber stands produced from 30 m Landsat 5 TM data compared well (high statistical significance) with the provincial rubber tree growth statistical data.
基金Supported by Special Item of Basic Scientific Research Business Fee of Rubber Research Institute,Chinese Academy of Tropical Agricultural Sciences(1630022014011)
文摘Microorganism plays an irreplaceable role in litter decomposition,and the dynamics of microbial activity in litter is of ecological significance in understanding the mechanism of litter decomposition. Therefore,the dynamic characteristics of microorganism in rubber litter decomposition were studied during 300 and 240 days by mesh bag method under different control measures in plantations. And the results were as following:(1) Microbial populations were closely related to litter residues and decomposition environments. The microbial population has been rising firstly and then falling on the ground but directly dropping under the ground by time.(2) Microbial populations under different environments as follows:0.07 mm aperture of mesh bag > 1 mm aperture of mesh bag,non-fertile hole > fertile hole,underground group > ground group. During the entire process of decomposition,the quantity of bacteria holed absolute superiority,then actinomycetes,finally fungi.(3) Through the correlation analysis,the total number of bacteria,fungi and microorganism in aboveground group was significantly associated with the decomposition rate,but there was little correlation to actinomycetes. It's suggested that fungi and bacteria are the main participants in litter decomposition on the ground. In underground group,the microbial groups were significantly or extremely significantly related to the dry weight of residues,but was not correlated to decomposition rate significantly,which suggested that litter provided food for underground microbes,and litter decomposition was more dependent on comprehensive effect of microbes,soil animals and soil environments.
文摘The rubber tree Hevea brasiliensis(Willd.Ex Adr.De Juss.)Müell Arg.]is an important source of latex for the production natural rubber.Natural rubber is an important biopolymer used in various industries,but aspects related to hormonal regulation in biosynthesis are still unknown,which would allow optimizing its production.We review the molecular and physiological mechanisms of increases latex regeneration and flow by the stimulation of rubber trees with exogenous applications of ethylene and jasmonate.We found that the increase in latex regeneration by ethylene is due to the increase in gene level expression and enzymatic activity of key photosynthesis and glycolysis enzymes for the generation of precursors in the first phase of rubber biosynthesis.Latex flow is supported by up-regulated genes in sucrose metabolism such as invertases,induction of sucrose transporters(SUT),and aquaporins(PIP)to maintain flow and turgor pressure in laticifers.Meanwhile,the increase in latex yield mediated by jasmonate may be due to the induction of laticifer differentiation in the long term and in the short term be mediated by the induction of small rubber particles(SRPP)as non-enzymatic cofactors in the production of latex.This information contributes to the knowledge of latex biosynthesis,which allows for a greater support for the exogenous application of jasmonates and ethylene to regulate its production.
基金supported by Yunnan Innovation Team Project and the start-up grant from South China Agricultural University(to L.G.).
文摘The rubber tree,Hevea brasiliensis,produces natural rubber that serves as an essential industrial raw material.Here,we present a high-quality reference genome for a rubber tree cultivar GT1 using single-molecule real-time sequencing(SMRT)and Hi-C technologies to anchor the~1.47-Gb genome assembly into 18 pseudochromosomes.The chromosome-based genome analysis enabled us to establish a model of spurge chromosome evolution,since the common paleopolyploid event occurred before the split of Hevea and Manihot.We show recent and rapid bursts of the three Hevea-specific LTR-retrotransposon families during the last 10 million years,leading to the massive expansion by~65.88%(~970 Mbp)of the whole rubber tree genome since the divergence from Manihot.We identify large-scale expansion of genes associated with whole rubber biosynthesis processes,such as basal metabolic processes,ethylene biosynthesis,and the activation of polysaccharide and glycoprotein lectin,which are important properties for latex production.A map of genomic variation between the cultivated and wild rubber trees was obtained,which contains~15.7 million high-quality single-nucleotide polymorphisms.We identified hundreds of candidate domestication genes with drastically lowered genomic diversity in the cultivated but not wild rubber trees despite a relatively short domestication history of rubber tree,some of which are involved in rubber biosynthesis.This genome assembly represents key resources for future rubber tree research and breeding,providing novel targets for improving plant biotic and abiotic tolerance and rubber production.
文摘Corynespora cassiicola is the causal agent of Corynespora Leaf Fall(CLF)disease.CLF is one of the most important fungal diseases of rubber trees in Asia and Africa but disease outbreaks have not been reported in South America.Cassiicolin,a small cysteine-rich glycoprotein secreted by the pathogenic C.cassiicola isolate CCP,was previously identified as a potential disease effector in rubber tree.Recently,the cassiicolin-encoding gene(Cas1)was characterized and shown to be expressed in the early phase of infection.In this study,we investigated whether previously undetected strains of C.cassiicola are present in South American rubber plantations by examining the fungal endophyte population found in asymptomatic rubber tree leaves.Four isolates were identified as C.cassiicola.Genes encoding new forms of the cassiicolin precursor protein(Cas3 and Cas4)were identified from these isolates.Three of four isolates were able to induce symptoms on the cultivar they were isolated from in a detached leaf assay,with different kinetics and intensities.One isolate had the same pathogenicity profile as the pathogenic isolate CCP;the other two isolates developed symptoms late during the course of infection,suggesting saprotrophic capabilities.However,no Cas3 or Cas4 transcripts could be detected upon inoculation with the endophytic isolates,whereas the reference gene Cas1 was expressed upon inoculation with the CCP isolate.This work demonstrated that C.cassiicola is present in South America in an endophytic form and that it may evolve from an endophytic to a saprophytic or even potentially pathogenic life style.
文摘Hevein, a lectin_like protein, is a major factor of lutoids in the latex of rubber trees ( Hevea brasiliensis Muell._Arg.). This factor is involved in coagulation of the latex and has the ability to bind chitin. The hevein gene with a length of 680 bp was cloned by the method of RT_PCR. Its promoter region with 1 306 bp of this gene was also isolated by genome walking, and its sequence included the typical TATA and CAAT boxes as well as the homologous sequence of abscisic acid (ABA) response elements. Expression of the hevein gene in the latex and leaves was detected by Northern blot. After treatment of the trees with ethylene and ABA, the results showed that the hevein gene was expressed principally in latex, and the expression could be induced by ethylene and ABA.
基金supported in part by National Basic Research Program of China(973 Project)(No.2014CB239501)National Natural Science Foundation of China(Nos.51707100,51377089)+1 种基金State Key Laboratory of Electrical Insulation and Power Equipment(No.EIPE16208)China Postdoctoral Science Foundation(No.2016M591176)
文摘In this paper,work was conducted to reveal electrical tree behaviors(initiation and propagation)of silicone rubber(SIR) under an impulse voltage with high temperature.Impulse frequencies ranging from 10 Hz to 1 k Hz were applied and the temperature was controlled between 30 °C and 90 °C.Experimental results show that tree initiation voltage decreases with increasing pulse frequency,and the descending amplitude is different in different frequency bands.As the pulse frequency increases,more frequent partial discharges occur in the channel,increasing the tree growth rate and the final shape intensity.As for temperature,the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher.Based on differential scanning calorimetry results,we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage.However,the tree growth rate decreases with increasing temperature.Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis.Different tree growth models considering tree channel characteristics are proposed.It is believed that increasing the conductivity in the tree channel restrains the partial discharge,holding back the tree growth at high temperature.
文摘Existing plant types of rubber tree after planting and available tapping tree were investigated, and there were about 28 rubber plantations with different tapping years of 8 varieties “CATAS7-33-97”, “CATAS8-79”, “CATAS7-20-59”, “PR107”, “RRIM600”, “GT1”, “INA873”, “93-114”in South China. The results showed that there were six kinds of existing plant types of rubber tree after planting of rubber plantations, which were available tapping trees, wind damaged trees, cold damaged trees, tapping panel dryness trees, absent trees and weak trees, respectively. These data investigated also showed rubber trees under available tapping, stoppage due to tapping panel dryness, absence, wind damage, cold damage and weakness were counted and calculated and made up for 72.21%, 14.75%, 5.61%, 3.86%, 2.68% and 1.89%. Tapping panel dryness trees, wind damage and absent trees are major factors for the loss of tapping rubber trees in the rubber plantations. Of these investigated varieties, available tapping trees per 100 trees of rubber plantation of “PR107”at the 1st, 12th, 14th, 16th, 20th, 24th tapping year were 96, 67, 70, 75, 66, 46 trees in Hainan planting zone, respectively. Available tapping trees per 100 trees of rubber plantation of “RRIM600”at the 9th, 15th, 20th, 22nd tapping year were 88, 62, 55, 36 trees in Yunnan planting zone, respectively. Available tapping trees per 100 trees of rubber plantation of “93-114” at the 10th, 19th, tapping year were 94, 62 trees in Guangdong planting zone. These results showed that available tapping trees of rubber plantation decreased with increasing tapping age under different planting zones in China.
基金Supported by the Project of the Basic Research Operation Cost of State Level Research Institutes "Long-term Location Investigation of Basic Data for Rubber Production " ( XJSYWFZX-2008-14 and XJSYWFZX-2007-2)the Project Natural Sciences Fund of Hainan Province (807045)~~
文摘[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to evaluate the ecological benefits of rubber plantations and provide basic data for studying the effect of tropical land utilization/cover change on the global carbon and nitrogen cycle. [Method]The situs was in Danzhou city,western region of Hainan Island,and the samples were four kinds of rubber plantations soil at different ages and one kind of control check (pepper,Piper nigrum L.) soil. In this research,four quadrats were set up in each sample,and the size of each was 20 cm×20 cm. Four specimens were gathered from four layers of 0-15,15-30,30-45,45-60,and the average of them was the last analysis result of each sample. Soil density was measured by cutting ring method,soil containing and hygroscopic water was detected by oven drying method,soil organic carbon (SOC) was measured by low temperature heated outside potassium dichromate oxidation-colorimetry method,and soil total nitrogen (STN) was detected by semimicro Kjeldahl method. [Result]SOC contents of different layers in rubber plantations soil at different age stages (including the CK pepper soil,the same as below) varied little,and the content of SOC in surface layer (0-15 cm) was higher,while the underlayer (45-60 cm) was lower than the average value; there was significant difference in SOC content among different kinds of soil,and the content was of 6.03-7.78 g/kg,tapping young trees (7 years) CK pepper mature age trees (30 years) prophase of young trees (2 years) tapping trees (16 years); there was no significant difference in SOC storage among different kinds of soil,and the storage was of 61.33-74.29 t/hm2,mature age trees (30 years) tapping young trees (7 years) prophase of young trees (2 years) CK pepper tapping trees (16 years); there was significant difference in STN content among rubber plantations soil at different age stages,the content was of 410.86-664.14 mg/kg2,CK pepper tapping young trees (7 years) prophase of young trees (2 years) mature age trees (30 years) tapping trees (16 years),and STN content of tapping trees (16 years) soil was extremely lowest; there was significant difference in C/N ratio among different kinds of soil,the ratio was of 10.94-14.47,and the ratio of tapping trees (16 years) mature age trees (30 years) tapping young trees (7 years) CK pepper prophase of young trees (2 years). [Conclusion]There wasn't unhealthy effect of rubber trees planted in tropical area on the content and storage of SOC,the content of STN and the ratio of C/N. there was no significant difference between rubber plantations and CK pepper soil,and the effects of rubber plantation on soil carbon-nitrogen was similar to that of other tropical crops (such as pepper).
基金financially supported by the Key Research Program of Frontier Sciences,the Chinese Academy of Sciences (No.QYZDY-SSW-SMC014)the National Natural Science Foundation of China (No.32171576)。
文摘The leaf phenology of trees has received particular attention for its crucial role in the global water and carbon balances,ecosystem,and species distribution.However,current studies on leaf phenology have mainly focused on temperate trees,while few studies including tropical trees.Little attention has been paid to globally extensive industrial plantations.Rubber plantations are important to both the local and global economies.In this study,we investigated the legacy effects of defoliation phenology on the following year’s leaf flushing,leaf disease,and also latex yield of rubber trees,an economically important tree to local people and the world.Results show that extended duration of defoliation increased the subsequent duration of refoliation and rates of infection by powdery mildew disease,but led to reduced latex yield in March.This legacy effect of rubber defoliation may relate to the carbohydrate reserved in the trees.A longer duration of defoliation would consume more reserved carbohydrates,reducing available reserves for disease defense and latex production.Extended duration of defoliation period was associated with either a lower temperature before the cessation of latex tapping in October-November and/or a higher temperature after the cessation of latex tapping in December-January.Leaf falling signals the end of photosynthetic activities in deciduous trees.Thus,the leaf falling phenology will impact ecological processes involving rubber trees.Our findings indicated that the inclusion of defoliation periods in future rubber trees’ research,will be crucial to furthering our understanding of leaf flushing,powdery mildew disease,and latex yield.
文摘Agroforestry ecosystems are constructed by simulating natural ecosystems, applying the principles of symbiosis in nature, and organizing multiple plant populations to coexist, while conducting targeted cultivation and structural control scientifically. Rubber agroforestry complex ecosystems aim for sustainable development in terms of industry, ecology, resource utilization, and the livelihoods of producers. Rubber agroforestry complex ecosystems create a complex production structure system that integrates biology, society, and the economy through species combinations. Rubber trees and associated biological components coordinate with each other, mutually promote growth, and yield a variety of products for producers. Cultivation techniques and patterns of rubber agroforestry are essential components of these ecosystems. This study analyzes the production practices of rubber agroforestry complex cultivation, with a focus on the development and characteristics (complexity, systematicity, intensity, and hierarchy) of rubber agroforestry systems using a literature analysis and a survey approach. It explores the types and scales of complex planting, specifications and forms, and major effects of complex cultivation. This study identifies successful rubber agroforestry cultivation patterns and practical techniques, as well as the potential benefits of developing rubber agroforestry cultivation. It also points out the shortcomings in the development of complex planting, including an emphasis on production practices but insufficient theoretical research, a focus on production but inadequate attention to the market, and an emphasis on yield while overlooking the improvement of standards, brands, and added value. There are various complex patterns for young rubber plantations, but relatively fewer for mature plantations. Based on this analysis, this study suggests that future efforts should focus on in-depth research on interspecies and environmental interactions in rubber agroforestry ecosystems, clearly define key roles, accelerate the innovation of development patterns, and strengthen the foundation for development. It recommends promoting and demonstrating successful rubber agroforestry complex patterns and providing technical training, developing product branding for rubber agroforestry patterns, enhancing product value, expanding the application functions of rubber-forest mixed crop products, and establishing a stable and sustainable industry chain. This study provide practical experience and theoretical insights in rubber agroforestry complex systems from China the potential to enrich the knowledge of rubber agroforestry composite systems, provide practical experience to improve the operating income of smallholders, and even promote the sustainable development of rubber plantations.
文摘Traditional techniques for treatment of waste rubber, such as burning, generate some highly non- degradable synthetic materials that cause unrepairable environmental damages by releasing heavy metals, such as arsenic, chromium, lead, manganese and nickel. For this, scrap tires are used as light- weight alternative materials in many engineering applications, such as retaining wall backfilling. In the present study, 90 laboratory models were prepared to evaluate the stability of mechanically stabilized earth (MSE) walls with plate anchors. Then, the bearing capacity and horizontal displacements of the retaining walls were monitored by exerting a static loading to investigate the effects of adding different contents (5 wt%, 10 wt%, 15 wt% and 20 wt%) of recycled crumb rubber (RCR) to the fill of a mechanically stabilized retaining wall with plate anchors. To visualize the critical slip surface of the wall, the particle image velocimetry (PIV) technique was employed. Results showed that the circular anchor plates almost continually provided a higher bearing capacity and wall stability than the square plates. Moreover, the backfill with 15 wt% RCR provided the maximum bearing capacity of the wall. Increasing the weight percentage of RCR to 20 wt% resulted in a significant reduction in horizontal displacement of the wall, which occurred due to the decrease in lateral earth pressure against the whole walls. An increase in RCR content resulted in the decrease in the formation of failure wedge and the expansion of the wall slip surface, and the failure wedge did not form in the sand mixtures with 15 wt% and 20 wt% RCRs.
文摘Rocks are composed of mineral particles and micropores between mineral which has a great influence on the mechanical properties of rocks. In this paper, based on the theory of locked-in stress developed by academician Chen Zongji, the locked-in stress problem in underground rock is simulated by the thermal expansion of hard rubber particles. The pore inclusion in rock is assumed to be uniformly distributed spherical cavities. Using the thermal stress theory, the stress of rock with a spherical pore inclusion is equivalent to the thermal stress generated by the spherical hard rubber inclusion. The elastic theory formula of the temperature increment and the equivalent pore pressure of the spherical hard rubber inclusion is derived. The numerical simulation of the rock mass model with a spherical hard rubber inclusion is carried out and compared to the theoretical calculation results<span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:zh-cn;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"="">;</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:en-us;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"=""> the results show that they are consistent. The method proposed by this paper for simulating stress distribution in rock by thermal stress is reasonable and feasible</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:zh-cn;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"="">;</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:en-us;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"=""> it has a positive meaning for further study of mechanic phenomenon of rock with micropore inclusion.</span>