Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Her...Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads.展开更多
As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natu...As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natural gas(LNG)as the working fluid inHCTT heat exchangers is rarely reported.In this paper,the characteristics of HCTT heat exchangers,in which LNG flows in the inner tube and ethylene glycol-water solution flows in the outer tube,are studied by numerical simulations.The influences of heat transfer characteristics and pressure drops of the HCTT heat transfers are studied by changing the initial flow velocity,the helical middle diameter,and the helical pitch.The results indicate that different initial flow velocities in the inner tube and the outer tube of the HCTT heat exchanger have little influence on the secondary flow of the fluid in the helical tubes,and the overall flow characteristics tend to be stable.The smaller helical middle diameter of the HCTT heat exchanger leads to the shorter fluid flow length,the smaller resistance along the tubes and the increase of initial pressure under the condition of constant inlet velocity,which promotes the occurrence of secondary flow.The axial flow of fluid promotes the destruction of heat transfer boundary layer and gains strength of the turbulence and heat transfer efficiency.With the increase of the helical pitch of the HCTT heat exchanger,the turbulent intensity and the heat transfer efficiency are also increased.Moreover,the improvement of the flow state of the HCTT exchanger in a longer helical pitch also enhances the heat exchange efficiency.展开更多
Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified...Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter.展开更多
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud...The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.展开更多
Topology optimization of thermal-fluid coupling problems has received widespread attention.This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design.The proposed method uti...Topology optimization of thermal-fluid coupling problems has received widespread attention.This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design.The proposed method utilizes an artificial density field to create two permeability interpolation functions that exhibit opposing trends,ensuring separation between the two fluid domains.Additionally,a Gaussian function is employed to construct an interpolation function for the thermal conductivity coefficient.Furthermore,a computational program has been developed on the OpenFOAM platform for the topology optimization of two-fluid heat exchangers.This program leverages parallel computing,significantly reducing the time required for the topology optimization process.To enhance computational speed and reduce the number of constraint conditions,we replaced the conventional pressure drop constraint condition in the optimization problem with a pressure inlet/outlet boundary condition.The 3D optimization results demonstrate the characteristic features of a surface structure,providing valuable guidance for designing heat exchangers that achieve high heat exchange efficiency while minimizing excessive pressure loss.At the same time,a new structure appears in large-scale topology optimization,which proves the effectiveness and stability of the topology optimization program written in this paper in large-scale calculation.展开更多
Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinea...Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinear and combinatorial nature of the HEN problem,it is not easy to find solutions of high quality for large-scale problems.The reinforcement learning(RL)method,which learns strategies through ongoing exploration and exploitation,reveals advantages in such area.However,due to the complexity of the HEN design problem,the RL method for HEN should be dedicated and designed.A hybrid strategy combining RL with mathematical programming is proposed to take better advantage of both methods.An insightful state representation of the HEN structure as well as a customized reward function is introduced.A Q-learning algorithm is applied to update the HEN structure using theε-greedy strategy.Better results are obtained from three literature cases of different scales.展开更多
Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working i...Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working in refrigerators and air conditioners.Although FTHE is widely used in commercial products of SHP,previous research on its characteristics is very limited.In this paper,a mathematical model for a SHP with FTHE as the evaporator and plate heat exchanger as the condenser is established and verified with experiments.Parametric analyses are carried out to investigate the influences of evaporator design parameters:air inlet velocity,number of tube rows,tube diameter,and fin pitch.With the increasing of air velocity,number of tube rows and tube diameter,and the decreasing of fin pitch,the heat transfer rate increases,while the energy efficiency ratio(EER)decreases monotonically.Using the total cost of the ten-year life cycle as the performance index,the structure parameters of the evaporator with a given heat transfer rate are optimized by the method of orthogonal experimental design.It is found that the total cost can differ as large as nearly ten times between groups.Among the three factors investigated,the number of tube rows has a significant impact on the total cost of the evaporator.With more tube rows,the total cost will be less.The impacts of fin pitch and tube diameter are insignificant.These results are of practical importance for the engineering design of FTHE in gravity-assisted SHP.展开更多
In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil h...In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers.展开更多
A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity.Adding nanoparticles of high thermal conductivity materials is a significant way to enhance ...A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity.Adding nanoparticles of high thermal conductivity materials is a significant way to enhance the heat transfer fluid’s thermal conductivity.This research used engine oil containing alumina(Al_(2)O_(3))nanoparticles and copper oxide(CuO)to test whether or not the heat exchanger’s efficiency could be improved.To establish the most effective elements for heat transfer enhancement,the heat exchangers thermal performance was tested at 0.05%and 0.1%concentrations for Al_(2)O_(3)and CuO nanoparticles.The simulation results showed that the percentage increase in Nusselt number(Nu)for nanofluid at 0.05%particle concentration compared to pure oil was 9.71%for CuO nanofluids and 6.7%for Al_(2)O_(3)nanofluids.At 0.1%concentration,the enhancement percentage in Nu was approximately 23%for CuO and 18.67%for Al_(2)O_(3)nanofluids,respectively.At a concentration of 0.1%,CuO nanofluid increased the LMTD and overall heat transfer coefficient(U)by 7.24 and 5.91%respectively.Both the overall heat transfer coefficient(U)and the heat transfer coefficient(hn)for CuO nanofluid at a concentration of 0.1%increased by 5.91%and 10.68%,respectively.The effectiveness(εn)of a heat exchanger was increased by roughly 4.09%with the use of CuO nanofluid in comparison to Al_(2)O_(3)at a concentration of 0.1%.The amount of exergy destruction in DTHX goes down as Re and volume fractions go up.Moreover,at 0.05%and 0.1%nanoparticle concentrations,the percentage increase in dimensionless exergy is 10.55%and 13.08%,respectively.Finally,adding the CuO and Al_(2)O_(3)nanoparticles improved the thermal conductivity of the main fluid(oil),resulting in a considerable increase in the thermal performance and rate of heat transfer of a heat exchanger.展开更多
When a brazed plate heat exchanger is used as an evaporator,the working mass in the channel may undergo soli-dification,thereby hindering the refrigeration cycle.In this study the liquid solidification process and its o...When a brazed plate heat exchanger is used as an evaporator,the working mass in the channel may undergo soli-dification,thereby hindering the refrigeration cycle.In this study the liquid solidification process and its optimi-zation in a brazed plate heat exchanger are investigated numerically for different inlet velocities;moreover,different levels of corrugation are considered.The results indicate that solidificationfirst occurs around the con-tacts,followed by the area behind the contacts.It is also shown that deadflow zones exist in the sharp areas and such areas are prone to liquid solidification.After optimization,the solidification area attains its smallest value when a corrugation spacingλ=4.2 mm is considered.展开更多
The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid i...The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid in the shell-side channel is focused on. The results on meridian planes indicate that in the shell-side channel, the center part of fluid has an outward tendency because of the centrifugal force, and the peripheral region fluid has an inward tendency under the centripetal force. So in a spiral cycle, the fluid is divided into the upper and lower beams of streamlines, at the same time the Dean vortices are formed near the left baffle, and then the fluid turns to centripetal flow near the right baffle. Finally the two beams of streamlines merge in the main flow. The results of a number of parallel slices between two parallel baffles with the same sector in a swirl cycle also show the existence of the secondary flow and some backward flows at the V-gaps of the adjacent baffles. The secondary flows have a positive effect on mixing fluid by promoting the momentum and mass exchange between fluid particles near the tube wall and in the main stream, and thus they will enhance the heat transfer of the helix heat exchanger.展开更多
A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do...A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact.展开更多
The shell side flow fields of both sextant and trisection helical baffle heat exchangers are presented on meridian and multilayer hexagon slices.It verifies that the performance of sextant schemes is better than those...The shell side flow fields of both sextant and trisection helical baffle heat exchangers are presented on meridian and multilayer hexagon slices.It verifies that the performance of sextant schemes is better than those of the other kinds of helical baffle heat exchangers.The main mechanisms are due to the restricted leakage flow in the minimized gaps with increased baffle number and by one row of tubes dampen the leakage flow in the circumferential overlapped area of the adjacent helical baffles.The performance features were simulated on two different angled sextant helical heat exchangers and each compared with two trisection ones of either identical helical pitch or identical incline angle.The results verified that the performances of helical heat exchangers are mainly determined by the helical pitch rather than the baffle incline angle.The average values of comprehensive index hoΔpo-1/3 of the trisection helical schemes T-24.1°and T-29.7°are correspondingly 3.47%and 3.34%lower than those of the sextant ones X-20°and X-25°with identical helical pitches.The comparison results show that the average values of shell side h.t.c.hoand comprehensive index hoΔpo-1/3 of the optimal dual helix sextant scheme DX30°are respectively 7.22%and 23.56%higher than those of the segment scheme S100.展开更多
The non-uniformity of gas–liquid mixture is a critical issue which leads to the heat transfer deterioration of spiralwound heat exchangers(SWHEs).Two-phase mass flow rate and the content of gas are important paramete...The non-uniformity of gas–liquid mixture is a critical issue which leads to the heat transfer deterioration of spiralwound heat exchangers(SWHEs).Two-phase mass flow rate and the content of gas are important parameters as well as structural parameters which have prominent influences on flow distribution uniformity of SWHE shell side.In order to investigate the influences of these parameters,an experimental test system was built using water and air as mediums and a novel distributor named"tubes distributor"was designed.The effects of mass flow rate and the content of gas on two-phase distribution performance were analyzed,where the mass flow rate ranged from 28.4 to 171.9 kg·h-1 and the content of gas changed from 0.2 to 0.8,respectively.The results showed that the mixture mass flow rate considerably influenced the liquid distribution than that of gas phase and the larger mass flow rate exhibited the better distribution uniformity of two-phase flow.It was also found that the tubes distributor had the better two-phase uniformity when the content of gas was around 0.4.Tube diameter played an important role in the distribution of gas phase and slit width was more significant for the uniformity of liquid phase.展开更多
This article presents a simulated annealing-based approach to the optimal synthesis of distillation column considering intermediate heat exchangers arrangements. T-he number of intermediate condensers and/or intermedi...This article presents a simulated annealing-based approach to the optimal synthesis of distillation column considering intermediate heat exchangers arrangements. T-he number of intermediate condensers and/or intermediate reboilers, the placement locations, the.operating pressure of column, and the heat duties of intermediate heat exchangers are treated as optimization variables. A novel coding procedure making use of an integer number series is proposed to represent and manipulate the structure of system and a stage-to-stage method is used for column design and cost calculation. With the representation procedure, the synthesis problem is formulated as a mixed integer nonlinear programming (MINLP) problem, which can then be solved with an improved simulated annealing algorithm. Two examples are illustrated to show the effectiveness of the suggested approach.展开更多
The flow maldistribution and the effect of different inlet configuration on the flow distribution in platefin heat exchangers were studied experimentally. It is found that the flow maldistribution is serious because o...The flow maldistribution and the effect of different inlet configuration on the flow distribution in platefin heat exchangers were studied experimentally. It is found that the flow maldistribution is serious because of the defects of inlet configurations, while the inlet configuration and Reynolds number are the main factors affecting the flow distribution. The improved inlet configurations, which are the header with a two-stage distributing configuration and the guide vane with a fluid complementary cavity were proposed and tested in this paper. The experimental results show that the improved inlet configurations can effectively improve the performance of flow distribution in heat exchangers.展开更多
Shape and quantity of helical baffles have great impact on the shell-side performance of helical baffled heat exchangers (HBHE). In this work, three physical models of HBHE with baffles of different shape (trisecti...Shape and quantity of helical baffles have great impact on the shell-side performance of helical baffled heat exchangers (HBHE). In this work, three physical models of HBHE with baffles of different shape (trisection, quadrant and sextant sector) were investigated. Numerical simulations were performed on HBHE at three helix an- gles (10°, 25° and 40°) by the software ANSYS CFX. Analyses of numerical results indicate that the sextant HBHE shows relatively better fluid flow performance because the leakage flow in the triangle area is evidently reduced and the fluid streamline appears much closer to an ideal spiral flow, while the trisection and quadrant HBHE show more scattered and disordered streamline distributions. The convective heat transfer coefficient and pressure drop in three types of HBHE were presented. Further investigations on the shell side performance with different helical baf- fles were implemented by the field synergy theory. Both theoretical and numerical analyses gave support on the re- lations between helical baffle shape and shell-side performance. This paper may provide useful reference for the selection of baffle shade and auantitv in HBHE.展开更多
Many methods have been proposed for synthesis of heat exchanger networks in recent years, most of which consider single pass exchangers. In this study some evolutionary rules have been proposed for synthesis of multip...Many methods have been proposed for synthesis of heat exchanger networks in recent years, most of which consider single pass exchangers. In this study some evolutionary rules have been proposed for synthesis of multipass exchanger networks. The method is based on the heuristic that optimal networks should feature maximum energy recovery and have the minimum number of shells. The effectiveness of the developed evolutionary rules is demonstrated through some literature examples.展开更多
The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then...The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then,simulation verification experiments are designed in order to validate the model.The results show that the tem-peraturefield undergoes strong variations in time when an inlet wind speed of 6 m/s is considered,while the heat transfer error reaches a minimum of 5.1%.For an inlet velocity of 9 m/s,the heat transfer drops to the lowest point,while the heat transfer error reaches a maximum,i.e.,9.87%.The pressure drop increasesfirst and then decreases with an increase in the wind speed and reaches a maximum of 819 Pa under the 9 m/s wind speed con-dition.Moreover,the pressure drops,and the heat transfer coefficient increases with the Reynolds number.展开更多
A cell model to describe and optimize heat and mass transfer in contact heat exchangers for utilization of exhaust gases heat is proposed. The model is based on the theory of Markov chains and allows calculating heat ...A cell model to describe and optimize heat and mass transfer in contact heat exchangers for utilization of exhaust gases heat is proposed. The model is based on the theory of Markov chains and allows calculating heat and mass transfer at local moving force of the processes in each cell. The total process is presented as two parallel chains of cells (one for water flow and one for gas flow). The corresponding cells of the chains can exchange heat and mass, and water and gas can travel along their chains according to their transition ma-trices. The results of numerical experiments showed that the most part of heat transfer occurs due to moisture condensation from gas and the most intense heat transfer goes near the inlet of gas. Experimental validation of the model showed a good correlation between calculated and experimental data for an industrial contact heat exchanger if appropriate empirical equations were used to calculate heat and mass transfer coefficient. It was also shown that there exists the optimum height of heat exchanger that gave the maximum gain in heat energy utilization.展开更多
文摘Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads.
基金supported by Innovative Team Introduction Projects for New Universities in Jinan City(No.2021GXRC075).
文摘As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natural gas(LNG)as the working fluid inHCTT heat exchangers is rarely reported.In this paper,the characteristics of HCTT heat exchangers,in which LNG flows in the inner tube and ethylene glycol-water solution flows in the outer tube,are studied by numerical simulations.The influences of heat transfer characteristics and pressure drops of the HCTT heat transfers are studied by changing the initial flow velocity,the helical middle diameter,and the helical pitch.The results indicate that different initial flow velocities in the inner tube and the outer tube of the HCTT heat exchanger have little influence on the secondary flow of the fluid in the helical tubes,and the overall flow characteristics tend to be stable.The smaller helical middle diameter of the HCTT heat exchanger leads to the shorter fluid flow length,the smaller resistance along the tubes and the increase of initial pressure under the condition of constant inlet velocity,which promotes the occurrence of secondary flow.The axial flow of fluid promotes the destruction of heat transfer boundary layer and gains strength of the turbulence and heat transfer efficiency.With the increase of the helical pitch of the HCTT heat exchanger,the turbulent intensity and the heat transfer efficiency are also increased.Moreover,the improvement of the flow state of the HCTT exchanger in a longer helical pitch also enhances the heat exchange efficiency.
基金supported by Innovative Team Introduction Projects for New Universities in Jinan City(No.2021GXRC075).
文摘Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter.
基金funded by the National Natural Science Foundation of China(No.51806236,No.51806239)the Fundamental Research Funds for the Central Universities(No.2015XKMS059)+1 种基金Shaanxi Postdoctoral Fund Project(No.2018BSHEDZZ56)Foundation of Key Laboratory of Thermo-Fluid Science and Engineering(Xi'an Jiaotong University),Ministry of Education(No.KLTFSE2017KF01)。
文摘The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.
基金supported by the Aeronautical Science Foundation of China(Grant No.2020Z009063001)the Fundamental Research Funds for the Central Universities(Grant No.DUT22GF303).
文摘Topology optimization of thermal-fluid coupling problems has received widespread attention.This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design.The proposed method utilizes an artificial density field to create two permeability interpolation functions that exhibit opposing trends,ensuring separation between the two fluid domains.Additionally,a Gaussian function is employed to construct an interpolation function for the thermal conductivity coefficient.Furthermore,a computational program has been developed on the OpenFOAM platform for the topology optimization of two-fluid heat exchangers.This program leverages parallel computing,significantly reducing the time required for the topology optimization process.To enhance computational speed and reduce the number of constraint conditions,we replaced the conventional pressure drop constraint condition in the optimization problem with a pressure inlet/outlet boundary condition.The 3D optimization results demonstrate the characteristic features of a surface structure,providing valuable guidance for designing heat exchangers that achieve high heat exchange efficiency while minimizing excessive pressure loss.At the same time,a new structure appears in large-scale topology optimization,which proves the effectiveness and stability of the topology optimization program written in this paper in large-scale calculation.
基金The financial support provided by the Project of National Natural Science Foundation of China(U22A20415,21978256,22308314)“Pioneer”and“Leading Goose”Research&Development Program of Zhejiang(2022C01SA442617)。
文摘Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinear and combinatorial nature of the HEN problem,it is not easy to find solutions of high quality for large-scale problems.The reinforcement learning(RL)method,which learns strategies through ongoing exploration and exploitation,reveals advantages in such area.However,due to the complexity of the HEN design problem,the RL method for HEN should be dedicated and designed.A hybrid strategy combining RL with mathematical programming is proposed to take better advantage of both methods.An insightful state representation of the HEN structure as well as a customized reward function is introduced.A Q-learning algorithm is applied to update the HEN structure using theε-greedy strategy.Better results are obtained from three literature cases of different scales.
基金supported by Archaeological Artifact Protection Technology Project of Zhejiang Province(NO2021013).
文摘Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working in refrigerators and air conditioners.Although FTHE is widely used in commercial products of SHP,previous research on its characteristics is very limited.In this paper,a mathematical model for a SHP with FTHE as the evaporator and plate heat exchanger as the condenser is established and verified with experiments.Parametric analyses are carried out to investigate the influences of evaporator design parameters:air inlet velocity,number of tube rows,tube diameter,and fin pitch.With the increasing of air velocity,number of tube rows and tube diameter,and the decreasing of fin pitch,the heat transfer rate increases,while the energy efficiency ratio(EER)decreases monotonically.Using the total cost of the ten-year life cycle as the performance index,the structure parameters of the evaporator with a given heat transfer rate are optimized by the method of orthogonal experimental design.It is found that the total cost can differ as large as nearly ten times between groups.Among the three factors investigated,the number of tube rows has a significant impact on the total cost of the evaporator.With more tube rows,the total cost will be less.The impacts of fin pitch and tube diameter are insignificant.These results are of practical importance for the engineering design of FTHE in gravity-assisted SHP.
文摘In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers.
文摘A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity.Adding nanoparticles of high thermal conductivity materials is a significant way to enhance the heat transfer fluid’s thermal conductivity.This research used engine oil containing alumina(Al_(2)O_(3))nanoparticles and copper oxide(CuO)to test whether or not the heat exchanger’s efficiency could be improved.To establish the most effective elements for heat transfer enhancement,the heat exchangers thermal performance was tested at 0.05%and 0.1%concentrations for Al_(2)O_(3)and CuO nanoparticles.The simulation results showed that the percentage increase in Nusselt number(Nu)for nanofluid at 0.05%particle concentration compared to pure oil was 9.71%for CuO nanofluids and 6.7%for Al_(2)O_(3)nanofluids.At 0.1%concentration,the enhancement percentage in Nu was approximately 23%for CuO and 18.67%for Al_(2)O_(3)nanofluids,respectively.At a concentration of 0.1%,CuO nanofluid increased the LMTD and overall heat transfer coefficient(U)by 7.24 and 5.91%respectively.Both the overall heat transfer coefficient(U)and the heat transfer coefficient(hn)for CuO nanofluid at a concentration of 0.1%increased by 5.91%and 10.68%,respectively.The effectiveness(εn)of a heat exchanger was increased by roughly 4.09%with the use of CuO nanofluid in comparison to Al_(2)O_(3)at a concentration of 0.1%.The amount of exergy destruction in DTHX goes down as Re and volume fractions go up.Moreover,at 0.05%and 0.1%nanoparticle concentrations,the percentage increase in dimensionless exergy is 10.55%and 13.08%,respectively.Finally,adding the CuO and Al_(2)O_(3)nanoparticles improved the thermal conductivity of the main fluid(oil),resulting in a considerable increase in the thermal performance and rate of heat transfer of a heat exchanger.
基金This research is supported by the Scientific Problem Tackling Program of Science and Technology Commission of Shanghai Municipality(18DZ1202000)the Shanghai Local University Project“Research and Application of Key Technologies of New Efficient Micro Gas Turbine System”(No.19020500900).
文摘When a brazed plate heat exchanger is used as an evaporator,the working mass in the channel may undergo soli-dification,thereby hindering the refrigeration cycle.In this study the liquid solidification process and its optimi-zation in a brazed plate heat exchanger are investigated numerically for different inlet velocities;moreover,different levels of corrugation are considered.The results indicate that solidificationfirst occurs around the con-tacts,followed by the area behind the contacts.It is also shown that deadflow zones exist in the sharp areas and such areas are prone to liquid solidification.After optimization,the solidification area attains its smallest value when a corrugation spacingλ=4.2 mm is considered.
基金The National Natural Science Foundation of China (No.50976022)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period (No.2008BAJ12B02)
文摘The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid in the shell-side channel is focused on. The results on meridian planes indicate that in the shell-side channel, the center part of fluid has an outward tendency because of the centrifugal force, and the peripheral region fluid has an inward tendency under the centripetal force. So in a spiral cycle, the fluid is divided into the upper and lower beams of streamlines, at the same time the Dean vortices are formed near the left baffle, and then the fluid turns to centripetal flow near the right baffle. Finally the two beams of streamlines merge in the main flow. The results of a number of parallel slices between two parallel baffles with the same sector in a swirl cycle also show the existence of the secondary flow and some backward flows at the V-gaps of the adjacent baffles. The secondary flows have a positive effect on mixing fluid by promoting the momentum and mass exchange between fluid particles near the tube wall and in the main stream, and thus they will enhance the heat transfer of the helix heat exchanger.
基金National Natural Science Foundation of China (21878102)
文摘A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact.
基金Supported by the National Natural Science Foundation of China(51776035).
文摘The shell side flow fields of both sextant and trisection helical baffle heat exchangers are presented on meridian and multilayer hexagon slices.It verifies that the performance of sextant schemes is better than those of the other kinds of helical baffle heat exchangers.The main mechanisms are due to the restricted leakage flow in the minimized gaps with increased baffle number and by one row of tubes dampen the leakage flow in the circumferential overlapped area of the adjacent helical baffles.The performance features were simulated on two different angled sextant helical heat exchangers and each compared with two trisection ones of either identical helical pitch or identical incline angle.The results verified that the performances of helical heat exchangers are mainly determined by the helical pitch rather than the baffle incline angle.The average values of comprehensive index hoΔpo-1/3 of the trisection helical schemes T-24.1°and T-29.7°are correspondingly 3.47%and 3.34%lower than those of the sextant ones X-20°and X-25°with identical helical pitches.The comparison results show that the average values of shell side h.t.c.hoand comprehensive index hoΔpo-1/3 of the optimal dual helix sextant scheme DX30°are respectively 7.22%and 23.56%higher than those of the segment scheme S100.
基金Supported by the research funds from MIIT program on High Technology Research Program of Ship(2013K4181).
文摘The non-uniformity of gas–liquid mixture is a critical issue which leads to the heat transfer deterioration of spiralwound heat exchangers(SWHEs).Two-phase mass flow rate and the content of gas are important parameters as well as structural parameters which have prominent influences on flow distribution uniformity of SWHE shell side.In order to investigate the influences of these parameters,an experimental test system was built using water and air as mediums and a novel distributor named"tubes distributor"was designed.The effects of mass flow rate and the content of gas on two-phase distribution performance were analyzed,where the mass flow rate ranged from 28.4 to 171.9 kg·h-1 and the content of gas changed from 0.2 to 0.8,respectively.The results showed that the mixture mass flow rate considerably influenced the liquid distribution than that of gas phase and the larger mass flow rate exhibited the better distribution uniformity of two-phase flow.It was also found that the tubes distributor had the better two-phase uniformity when the content of gas was around 0.4.Tube diameter played an important role in the distribution of gas phase and slit width was more significant for the uniformity of liquid phase.
文摘This article presents a simulated annealing-based approach to the optimal synthesis of distillation column considering intermediate heat exchangers arrangements. T-he number of intermediate condensers and/or intermediate reboilers, the placement locations, the.operating pressure of column, and the heat duties of intermediate heat exchangers are treated as optimization variables. A novel coding procedure making use of an integer number series is proposed to represent and manipulate the structure of system and a stage-to-stage method is used for column design and cost calculation. With the representation procedure, the synthesis problem is formulated as a mixed integer nonlinear programming (MINLP) problem, which can then be solved with an improved simulated annealing algorithm. Two examples are illustrated to show the effectiveness of the suggested approach.
基金Supported by the Doctoral Foundation of Xi'an Jiaotong University (No. DFXJTU2002-12) the Foundation for Excellent Doctoral Dissertation Author by Minister of Education, China (No. 199933).
文摘The flow maldistribution and the effect of different inlet configuration on the flow distribution in platefin heat exchangers were studied experimentally. It is found that the flow maldistribution is serious because of the defects of inlet configurations, while the inlet configuration and Reynolds number are the main factors affecting the flow distribution. The improved inlet configurations, which are the header with a two-stage distributing configuration and the guide vane with a fluid complementary cavity were proposed and tested in this paper. The experimental results show that the improved inlet configurations can effectively improve the performance of flow distribution in heat exchangers.
基金Supported by the National Natural Science Foundation of China(51106090)the National Key Basic Research Program of China(2013CB228305)the Independent Innovation Foundation of Shandong University(2012TS190)
文摘Shape and quantity of helical baffles have great impact on the shell-side performance of helical baffled heat exchangers (HBHE). In this work, three physical models of HBHE with baffles of different shape (trisection, quadrant and sextant sector) were investigated. Numerical simulations were performed on HBHE at three helix an- gles (10°, 25° and 40°) by the software ANSYS CFX. Analyses of numerical results indicate that the sextant HBHE shows relatively better fluid flow performance because the leakage flow in the triangle area is evidently reduced and the fluid streamline appears much closer to an ideal spiral flow, while the trisection and quadrant HBHE show more scattered and disordered streamline distributions. The convective heat transfer coefficient and pressure drop in three types of HBHE were presented. Further investigations on the shell side performance with different helical baf- fles were implemented by the field synergy theory. Both theoretical and numerical analyses gave support on the re- lations between helical baffle shape and shell-side performance. This paper may provide useful reference for the selection of baffle shade and auantitv in HBHE.
文摘Many methods have been proposed for synthesis of heat exchanger networks in recent years, most of which consider single pass exchangers. In this study some evolutionary rules have been proposed for synthesis of multipass exchanger networks. The method is based on the heuristic that optimal networks should feature maximum energy recovery and have the minimum number of shells. The effectiveness of the developed evolutionary rules is demonstrated through some literature examples.
文摘The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then,simulation verification experiments are designed in order to validate the model.The results show that the tem-peraturefield undergoes strong variations in time when an inlet wind speed of 6 m/s is considered,while the heat transfer error reaches a minimum of 5.1%.For an inlet velocity of 9 m/s,the heat transfer drops to the lowest point,while the heat transfer error reaches a maximum,i.e.,9.87%.The pressure drop increasesfirst and then decreases with an increase in the wind speed and reaches a maximum of 819 Pa under the 9 m/s wind speed con-dition.Moreover,the pressure drops,and the heat transfer coefficient increases with the Reynolds number.
文摘A cell model to describe and optimize heat and mass transfer in contact heat exchangers for utilization of exhaust gases heat is proposed. The model is based on the theory of Markov chains and allows calculating heat and mass transfer at local moving force of the processes in each cell. The total process is presented as two parallel chains of cells (one for water flow and one for gas flow). The corresponding cells of the chains can exchange heat and mass, and water and gas can travel along their chains according to their transition ma-trices. The results of numerical experiments showed that the most part of heat transfer occurs due to moisture condensation from gas and the most intense heat transfer goes near the inlet of gas. Experimental validation of the model showed a good correlation between calculated and experimental data for an industrial contact heat exchanger if appropriate empirical equations were used to calculate heat and mass transfer coefficient. It was also shown that there exists the optimum height of heat exchanger that gave the maximum gain in heat energy utilization.