A new human infection with an animal flu virus has touched a raw nerve among the public and posed a challenge to China's disease control system, which is quickly responding to a possible outbreak by drawing on their ...A new human infection with an animal flu virus has touched a raw nerve among the public and posed a challenge to China's disease control system, which is quickly responding to a possible outbreak by drawing on their experiences with previous epidemics.展开更多
Members of the Rho family of GTPases are key regulators of the actin cytoskeleton. In particular, activated Racl stimulates membrane dorsal ruffle formation in response to platelet-derived growth factor (PDGF). Abl-...Members of the Rho family of GTPases are key regulators of the actin cytoskeleton. In particular, activated Racl stimulates membrane dorsal ruffle formation in response to platelet-derived growth factor (PDGF). Abl-interactor (Abi)- 1 and βP1X, a guanine nucleotide exchange factor for Racl, localise at these Rac1-induced actin structures and play important roles in the induction of membrane dorsal ruffling in response to PDGF in fibroblasts. Here, we demonstrate a novel interaction between Abi-1 and βPIX using the yeast two-hybrid system, in vitro pull-down assays, and in vivo co-immunoprecipitation experiments. In vitro, the C-terminal fragment of βPIX interacted with Abi-1, while in vivo the N-terminal fragment of βPIX interacted with Abi-1. The biological function of this interaction was investigated in mouse fibroblasts in response to PDGF stimulation. Abi-1 and βPIX co-localised in the cytoplasm and to membrane dorsal ruffles after PDGF treatment. We show that the co-expression of Abi-1 and truncated forms of βPIX in mouse fibroblasts blocked PDGF-induced membrane dorsal ruffles. Together, these results show that the interaction between Abi-1 and βPIX is involved in the formation of growth factor-induced membrane dorsal ruffles.展开更多
The density of states (DOS) of 17 kinds of rare earths (RE) doped rutile TiO2 was by using first-principles density functional theory (DFT) calculation. The band gap widths of RE doped futile TiO2 were important...The density of states (DOS) of 17 kinds of rare earths (RE) doped rutile TiO2 was by using first-principles density functional theory (DFT) calculation. The band gap widths of RE doped futile TiO2 were important factors for altering their absorbing wavelengths. The results show that RE ions could obviously reduce the band gap widths and form of energy of ruffle TiO2 except Lu, Y, Yb and Sc, and the order of absorbing wavelengths of RE doped ruffle TiO2 were the same as that of the results of calculation. The ratio of RE dopant was another important factor for the photo catalytic 'activity of RE doped rutile TiO2, and there was an optimal ratio of dopant. There was a constant for predigesting the calculation difficulty, respectively, which were 0.5mol.% and 100 mol^-1 under supposition. The band gap widths of RE doped rutile TiOz by DFT calculation were much larger than that by experiment. Finally, by transferring the calculation values to experiment values, it could be found and predicted that RE enlarged obviously the absorbing wavelengh of ruffle TiO2. In addition, the degree of RE ions edging out the Ti atom using the parameters of RE dements was computed.展开更多
α-PbO2-type TiO2 (TiO2-Ⅱ) is an important index mineral for ultrahigh-pressure metamorphism. After the discovery of a natural high-pressure phase of titanium oxide with α-PbO2- structure in omphacite from coesite...α-PbO2-type TiO2 (TiO2-Ⅱ) is an important index mineral for ultrahigh-pressure metamorphism. After the discovery of a natural high-pressure phase of titanium oxide with α-PbO2- structure in omphacite from coesite-bearing eclogite at Shima in the Dabie Mountains, China, a nanoscale (〈2 nm) α-PbO2-type TiO2 has been identified through electron diffraction and high-resolution transmission electron microscopy in coesite-bearing jadeite quartzite at Shuanghe in the Dabie Mountains. The crystal structure is orthorhombic with lattice parameters a = 4.58×10-1 nm, b = 5.42×10-1 nm, c = 4.96×10-1 nm and space group Pbcn. The analysis results reveal that ruffle {011}R twin interface is a basic structural unit of α-PbO2-type TiO2. Nucleation of α-PbO2-type TiO2 lamellae is caused by the displacement of one half of the titanium cations within the {011}R twin slab. This displacement reduces the Ti-O-Ti distance and is favored by high pressure. The identification of α- PbO2-type TiO2 in coesite-bearing jadeite quartzite from Shuanghe, Dabie Mountains, provides a new and powerful evidence of ultrahigh-pressure metamorphism at 4--7 GPa, 850℃-900℃, and implies a burial of continental crustal rocks to 130-200 kilometers depth or deeper. The α-PbO2-type TiO2 may be a useful indicator of the pressure and temperature in the diamond stability field.展开更多
Silicon-bearing rutile has been found in chromitite from the Luobusa (罗布莎) ophiolite, Tibet. However, the extent of SiO2 solubility in rutile and the nature of its origin are still unclear. At high pressure, SiO2...Silicon-bearing rutile has been found in chromitite from the Luobusa (罗布莎) ophiolite, Tibet. However, the extent of SiO2 solubility in rutile and the nature of its origin are still unclear. At high pressure, SiO2 takes a rutile structure with Si in 6-fold coordination. Thus, high pressures may enhance its solubility in rutile because of possible isovalent exchange in the octahedral site. In this study, we report new experimental results on SiO2 solubility in rutile up to 23 GPa and 2 000℃. Starting materials were mixtures of powdered pure rutile and pure quartz, with compositions of (Ti0.5Si0.5)O2, (Ti0.93Si0.07)O2, and (Ti0.75Si0.25)O2. The mixtures were loaded into either platinum capsules (for a 10/5 assembly) or rhenium capsules (for an 8/3 assembly). The experiments were carried out using multi-anvil high-pressure apparatus with a rhenium resistance heater. Sample temperatures were measured with a W5%Re-W26%Re thermocouple and were controlled within ±1 ℃ of the set temperature. TiO2-rich and SiO2-rich phases were produced in all the quenched samples. Microprobe analyses of the phases show that the solubility of SiO2 in rutile increases with increasing pressure, from 1.5 wt.% SiO2 at 10 GPa to 3.8 wt.% SiO2 at 23 GPa at a temperature of 1 800 ℃. The solubility also increases with increasing temperature from 0.5 wt.% SiO2 at 1 500 ℃ to 4.5 wt.% SiO2 at 2 000 ℃ at a pressure of 18 GPa. On the other hand, the solubility of TiO2 in coesite or stishovite is very limited, with an average of 0.6 wt.% TiO2 over the experimental P-T ranges. Temperature has a much larger effect on the solubility of SiO2 in ruffle than pressure. At high pressure, the melting point of SiO2 is definitely higher than that of TiO2 and the eutectic point moves towards SiO2 in the TiO2-SiO2 system. Lower oxygen fugacity decreases the solubility of SiO2 in ruffle, whereas water has little effect on the solubility. Our experimental data are extremely useful for determining the depth of origin of the SiO2-bearing rutfle found in nature.展开更多
文摘A new human infection with an animal flu virus has touched a raw nerve among the public and posed a challenge to China's disease control system, which is quickly responding to a possible outbreak by drawing on their experiences with previous epidemics.
文摘Members of the Rho family of GTPases are key regulators of the actin cytoskeleton. In particular, activated Racl stimulates membrane dorsal ruffle formation in response to platelet-derived growth factor (PDGF). Abl-interactor (Abi)- 1 and βP1X, a guanine nucleotide exchange factor for Racl, localise at these Rac1-induced actin structures and play important roles in the induction of membrane dorsal ruffling in response to PDGF in fibroblasts. Here, we demonstrate a novel interaction between Abi-1 and βPIX using the yeast two-hybrid system, in vitro pull-down assays, and in vivo co-immunoprecipitation experiments. In vitro, the C-terminal fragment of βPIX interacted with Abi-1, while in vivo the N-terminal fragment of βPIX interacted with Abi-1. The biological function of this interaction was investigated in mouse fibroblasts in response to PDGF stimulation. Abi-1 and βPIX co-localised in the cytoplasm and to membrane dorsal ruffles after PDGF treatment. We show that the co-expression of Abi-1 and truncated forms of βPIX in mouse fibroblasts blocked PDGF-induced membrane dorsal ruffles. Together, these results show that the interaction between Abi-1 and βPIX is involved in the formation of growth factor-induced membrane dorsal ruffles.
基金supported by the Education Commission of Sichuan Province of China (2006A099)the National Defense Basic Research Foundation of China (A3120080126)
文摘The density of states (DOS) of 17 kinds of rare earths (RE) doped rutile TiO2 was by using first-principles density functional theory (DFT) calculation. The band gap widths of RE doped futile TiO2 were important factors for altering their absorbing wavelengths. The results show that RE ions could obviously reduce the band gap widths and form of energy of ruffle TiO2 except Lu, Y, Yb and Sc, and the order of absorbing wavelengths of RE doped ruffle TiO2 were the same as that of the results of calculation. The ratio of RE dopant was another important factor for the photo catalytic 'activity of RE doped rutile TiO2, and there was an optimal ratio of dopant. There was a constant for predigesting the calculation difficulty, respectively, which were 0.5mol.% and 100 mol^-1 under supposition. The band gap widths of RE doped rutile TiOz by DFT calculation were much larger than that by experiment. Finally, by transferring the calculation values to experiment values, it could be found and predicted that RE enlarged obviously the absorbing wavelengh of ruffle TiO2. In addition, the degree of RE ions edging out the Ti atom using the parameters of RE dements was computed.
文摘α-PbO2-type TiO2 (TiO2-Ⅱ) is an important index mineral for ultrahigh-pressure metamorphism. After the discovery of a natural high-pressure phase of titanium oxide with α-PbO2- structure in omphacite from coesite-bearing eclogite at Shima in the Dabie Mountains, China, a nanoscale (〈2 nm) α-PbO2-type TiO2 has been identified through electron diffraction and high-resolution transmission electron microscopy in coesite-bearing jadeite quartzite at Shuanghe in the Dabie Mountains. The crystal structure is orthorhombic with lattice parameters a = 4.58×10-1 nm, b = 5.42×10-1 nm, c = 4.96×10-1 nm and space group Pbcn. The analysis results reveal that ruffle {011}R twin interface is a basic structural unit of α-PbO2-type TiO2. Nucleation of α-PbO2-type TiO2 lamellae is caused by the displacement of one half of the titanium cations within the {011}R twin slab. This displacement reduces the Ti-O-Ti distance and is favored by high pressure. The identification of α- PbO2-type TiO2 in coesite-bearing jadeite quartzite from Shuanghe, Dabie Mountains, provides a new and powerful evidence of ultrahigh-pressure metamorphism at 4--7 GPa, 850℃-900℃, and implies a burial of continental crustal rocks to 130-200 kilometers depth or deeper. The α-PbO2-type TiO2 may be a useful indicator of the pressure and temperature in the diamond stability field.
基金supported by the National Basic Research Program of China (No. 2003CB716503)China Geological Survey (No. 1212010610107)+1 种基金the National Natural Science Foundation of International Cooperation and Communication (No. 40610098)the Laboratory Foundation of the Chinese Academy of Geological Sciences (No. JB0703)
文摘Silicon-bearing rutile has been found in chromitite from the Luobusa (罗布莎) ophiolite, Tibet. However, the extent of SiO2 solubility in rutile and the nature of its origin are still unclear. At high pressure, SiO2 takes a rutile structure with Si in 6-fold coordination. Thus, high pressures may enhance its solubility in rutile because of possible isovalent exchange in the octahedral site. In this study, we report new experimental results on SiO2 solubility in rutile up to 23 GPa and 2 000℃. Starting materials were mixtures of powdered pure rutile and pure quartz, with compositions of (Ti0.5Si0.5)O2, (Ti0.93Si0.07)O2, and (Ti0.75Si0.25)O2. The mixtures were loaded into either platinum capsules (for a 10/5 assembly) or rhenium capsules (for an 8/3 assembly). The experiments were carried out using multi-anvil high-pressure apparatus with a rhenium resistance heater. Sample temperatures were measured with a W5%Re-W26%Re thermocouple and were controlled within ±1 ℃ of the set temperature. TiO2-rich and SiO2-rich phases were produced in all the quenched samples. Microprobe analyses of the phases show that the solubility of SiO2 in rutile increases with increasing pressure, from 1.5 wt.% SiO2 at 10 GPa to 3.8 wt.% SiO2 at 23 GPa at a temperature of 1 800 ℃. The solubility also increases with increasing temperature from 0.5 wt.% SiO2 at 1 500 ℃ to 4.5 wt.% SiO2 at 2 000 ℃ at a pressure of 18 GPa. On the other hand, the solubility of TiO2 in coesite or stishovite is very limited, with an average of 0.6 wt.% TiO2 over the experimental P-T ranges. Temperature has a much larger effect on the solubility of SiO2 in ruffle than pressure. At high pressure, the melting point of SiO2 is definitely higher than that of TiO2 and the eutectic point moves towards SiO2 in the TiO2-SiO2 system. Lower oxygen fugacity decreases the solubility of SiO2 in ruffle, whereas water has little effect on the solubility. Our experimental data are extremely useful for determining the depth of origin of the SiO2-bearing rutfle found in nature.