期刊文献+
共找到5,846篇文章
< 1 2 250 >
每页显示 20 50 100
Accountable capability improvement based on interpretable capability evaluation using belief rule base
1
作者 LI Xuan JIANG Jiang +2 位作者 SUN Jianbin YU Haiyue CHANG Leilei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1231-1244,共14页
A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and opt... A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and optimized.Then,the key sub-capabilities are identified by quantitatively calculating the contributions made by each sub-capability to the overall capability.Finally,the overall capability is improved by optimizing the identified key sub-capabilities.The theoretical contributions of the proposed approach are as follows.(i)An interpretable capability evaluation model is constructed by employing BRB which can provide complete access to decision-makers.(ii)Key sub-capabilities are identified according to the quantitative contribution analysis results.(iii)Accountable capability improvement is carried out by only optimizing the identified key sub-capabilities.Case study results show that“Surveillance”,“Positioning”,and“Identification”are identified as key sub-capabilities with a summed contribution of 75.55%in an analytical and deducible fashion based on the interpretable capability evaluation model.As a result,the overall capability is improved by optimizing only the identified key sub-capabilities.The overall capability can be greatly improved from 59.20%to 81.80%with a minimum cost of 397.Furthermore,this paper also investigates how optimizing the BRB with more collected data would affect the evaluation results:only optimizing“Surveillance”and“Positioning”can also improve the overall capability to 81.34%with a cost of 370,which thus validates the efficiency of the proposed approach. 展开更多
关键词 accountable capability improvement interpretable capability evaluation belief rule base(BRB).
下载PDF
A Health State Prediction Model Based on Belief Rule Base and LSTM for Complex Systems
2
作者 Yu Zhao Zhijie Zhou +3 位作者 Hongdong Fan Xiaoxia Han JieWang Manlin Chen 《Intelligent Automation & Soft Computing》 2024年第1期73-91,共19页
In industrial production and engineering operations,the health state of complex systems is critical,and predicting it can ensure normal operation.Complex systems have many monitoring indicators,complex coupling struct... In industrial production and engineering operations,the health state of complex systems is critical,and predicting it can ensure normal operation.Complex systems have many monitoring indicators,complex coupling structures,non-linear and time-varying characteristics,so it is a challenge to establish a reliable prediction model.The belief rule base(BRB)can fuse observed data and expert knowledge to establish a nonlinear relationship between input and output and has well modeling capabilities.Since each indicator of the complex system can reflect the health state to some extent,the BRB is built based on the causal relationship between system indicators and the health state to achieve the prediction.A health state prediction model based on BRB and long short term memory for complex systems is proposed in this paper.Firstly,the LSTMis introduced to predict the trend of the indicators in the system.Secondly,the Density Peak Clustering(DPC)algorithmis used todetermine referential values of indicators for BRB,which effectively offset the lack of expert knowledge.Then,the predicted values and expert knowledge are fused to construct BRB to predict the health state of the systems by inference.Finally,the effectiveness of the model is verified by a case study of a certain vehicle hydraulic pump. 展开更多
关键词 Health state predicftion complex systems belief rule base expert knowledge LSTM density peak clustering
下载PDF
COMPUTER-AIDED BLOCK ASSEMBLY PROCESS PLANNING IN SHIPBUILD-ING BASED ON RULE-REASONING 被引量:1
3
作者 ZHANG Zhiying LI Zhen JIANG Zhibin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期99-103,共5页
Computer-aided block assembly process planning based on rule-reasoning are developed in order to improve the assembly efficiency and implement the automated block assembly process planning generation in shipbuilding. ... Computer-aided block assembly process planning based on rule-reasoning are developed in order to improve the assembly efficiency and implement the automated block assembly process planning generation in shipbuilding. First, weighted directed liaison graph (WDLG) is proposed to represent the model of block assembly process according to the characteristics of assembly relation, and edge list (EL) is used to describe assembly sequences. Shapes and assembly attributes of block parts are analyzed to determine the assembly position and matched parts of parts used frequently. Then, a series of assembly rules are generalized, and assembly sequences for block are obtained by means of rule reasoning. Final, a prototype system of computer-aided block assembly process planning is built. The system has been tested on actual block, and the results were found to be quite efficiency. Meanwhile, the fundament for the automation of block assembly process generation and integration with other systems is established. 展开更多
关键词 Assembly process planning rule reasoning SHIPBUILDING
下载PDF
Alzheimer’s Disease Diagnosis Based on a Semantic Rule-Based Modeling and Reasoning Approach 被引量:1
4
作者 Nora Shoaip Amira Rezk +3 位作者 Shaker EL-Sappagh Tamer Abuhmed Sherif Barakat Mohammed Elmogy 《Computers, Materials & Continua》 SCIE EI 2021年第12期3531-3548,共18页
Alzheimer’s disease(AD)is a very complex disease that causes brain failure,then eventually,dementia ensues.It is a global health problem.99%of clinical trials have failed to limit the progression of this disease.The ... Alzheimer’s disease(AD)is a very complex disease that causes brain failure,then eventually,dementia ensues.It is a global health problem.99%of clinical trials have failed to limit the progression of this disease.The risks and barriers to detecting AD are huge as pathological events begin decades before appearing clinical symptoms.Therapies for AD are likely to be more helpful if the diagnosis is determined early before the final stage of neurological dysfunction.In this regard,the need becomes more urgent for biomarker-based detection.A key issue in understanding AD is the need to solve complex and high-dimensional datasets and heterogeneous biomarkers,such as genetics,magnetic resonance imaging(MRI),cerebrospinal fluid(CSF),and cognitive scores.Establishing an interpretable reasoning system and performing interoperability that achieves in terms of a semantic model is potentially very useful.Thus,our aim in this work is to propose an interpretable approach to detect AD based on Alzheimer’s disease diagnosis ontology(ADDO)and the expression of semantic web rule language(SWRL).This work implements an ontology-based application that exploits three different machine learning models.These models are random forest(RF),JRip,and J48,which have been used along with the voting ensemble.ADNI dataset was used for this study.The proposed classifier’s result with the voting ensemble achieves a higher accuracy of 94.1%and precision of 94.3%.Our approach provides effective inference rules.Besides,it contributes to a real,accurate,and interpretable classifier model based on various AD biomarkers for inferring whether the subject is a normal cognitive(NC),significant memory concern(SMC),early mild cognitive impairment(EMCI),late mild cognitive impairment(LMCI),or AD. 展开更多
关键词 Mild cognitive impairment Alzheimer’s disease knowledge based semantic web rule language reasoning system ADNI dataset machine learning techniques
下载PDF
Milling Fault Detection Method Based on Fault Tree Analysis and Hierarchical Belief Rule Base 被引量:1
5
作者 Xiaoyu Cheng Mingxian Long +1 位作者 Wei He Hailong Zhu 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2821-2844,共24页
Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the mil... Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the milling fault detection model.However,due to the complexity of the milling system structure and the uncertainty of the milling failure index,it is often impossible to construct model expert knowledge effectively.Therefore,a milling system fault detection method based on fault tree analysis and hierarchical BRB(FTBRB)is proposed.Firstly,the proposed method uses a fault tree and hierarchical BRB modeling.Through fault tree analysis(FTA),the logical correspondence between FTA and BRB is sorted out.This can effectively embed the FTA mechanism into the BRB expert knowledge base.The hierarchical BRB model is used to solve the problem of excessive indexes and avoid combinatorial explosion.Secondly,evidence reasoning(ER)is used to ensure the transparency of the model reasoning process.Thirdly,the projection covariance matrix adaptation evolutionary strategies(P-CMA-ES)is used to optimize the model.Finally,this paper verifies the validity model and the method’s feasibility techniques for milling data sets. 展开更多
关键词 Fault detection milling system belief rule base fault tree analysis evidence reasoning
下载PDF
A Novel Belief Rule-Based Fault Diagnosis Method with Interpretability 被引量:1
6
作者 Zhijie Zhou Zhichao Ming +4 位作者 Jie Wang Shuaiwen Tang You Cao Xiaoxia Han Gang Xiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1165-1185,共21页
Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understan... Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understandable knowledge expression and transparent reasoning process,the belief rule base(BRB)has extensive applications as an interpretable expert system in fault diagnosis.Optimization is an effective means to weaken the subjectivity of experts in BRB,where the interpretability of BRB may be weakened.Hence,to obtain a credible result,the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed,which are manifested in deviation from the initial judgement of experts and over-optimization of parameters.For these two factors,three indexes are proposed,namely the consistency index of rules,consistency index of the rule base and over-optimization index,tomeasure the interpretability of the optimizedmodel.Considering both the accuracy and interpretability of amodel,an improved coordinate ascent(I-CA)algorithmis proposed to fine-tune the parameters of the fault diagnosis model based on BRB.In I-CA,the algorithm combined with the advance and retreat method and the golden section method is employed to be one-dimensional search algorithm.Furthermore,the random optimization sequence and adaptive step size are proposed to improve the accuracy of the model.Finally,a case study of fault diagnosis in aerospace relays based on BRB is carried out to verify the effectiveness of the proposed method. 展开更多
关键词 Fault diagnosis belief rule base INTERPRETABILITY weakening factors improved coordinate ascent
下载PDF
A New Prediction System Based on Self-Growth Belief Rule Base with Interpretability Constraints
7
作者 Yingmei Li Peng Han +3 位作者 Wei He Guangling Zhang Hongwei Wei Boying Zhao 《Computers, Materials & Continua》 SCIE EI 2023年第5期3761-3780,共20页
Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the model... Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the modeling accuracy of the model.The belief rule base(BRB)can implement nonlinear modeling and express a variety of uncertain information,including fuzziness,ignorance,randomness,etc.However,the BRB system also has two main problems:Firstly,modeling methods based on expert knowledge make it difficult to guarantee the model’s accuracy.Secondly,interpretability is not considered in the optimization process of current research,resulting in the destruction of the interpretability of BRB.To balance the accuracy and interpretability of the model,a self-growth belief rule basewith interpretability constraints(SBRB-I)is proposed.The reasoning process of the SBRB-I model is based on the evidence reasoning(ER)approach.Moreover,the self-growth learning strategy ensures effective cooperation between the datadriven model and the expert system.A case study showed that the accuracy and interpretability of the model could be guaranteed.The SBRB-I model has good application prospects in prediction systems. 展开更多
关键词 Belief rule base evidence reasoning interpretability optimization prediction system
下载PDF
A Processor Performance Prediction Method Based on Interpretable Hierarchical Belief Rule Base and Sensitivity Analysis
8
作者 Chen Wei-wei He Wei +3 位作者 Zhu Hai-long Zhou Guo-hui Mu Quan-qi Han Peng 《Computers, Materials & Continua》 SCIE EI 2023年第3期6119-6143,共25页
The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can i... The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models. 展开更多
关键词 Hierarchical belief rule base(HBRB) evidence reasoning(ER) INTERPRETABILITY global sensitivity analysis(GSA) whale optimization algorithm(WOA)
下载PDF
Safety Assessment of Liquid Launch Vehicle Structures Based on Interpretable Belief Rule Base
9
作者 Gang Xiang Xiaoyu Cheng +1 位作者 Wei He Peng Han 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期273-298,共26页
A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure t... A liquid launch vehicle is an important carrier in aviation,and its regular operation is essential to maintain space security.In the safety assessment of fluid launch vehicle body structure,it is necessary to ensure that the assessmentmodel can learn self-response rules from various uncertain data and not differently to provide a traceable and interpretable assessment process.Therefore,a belief rule base with interpretability(BRB-i)assessment method of liquid launch vehicle structure safety status combines data and knowledge.Moreover,an innovative whale optimization algorithm with interpretable constraints is proposed.The experiments are carried out based on the liquid launch vehicle safety experiment platform,and the information on the safety status of the liquid launch vehicle is obtained by monitoring the detection indicators under the simulation platform.The MSEs of the proposed model are 3.8000e-03,1.3000e-03,2.1000e-03,and 1.8936e-04 for 25%,45%,65%,and 84%of the training samples,respectively.It can be seen that the proposed model also shows a better ability to handle small sample data.Meanwhile,the belief distribution of the BRB-i model output has a high fitting trend with the belief distribution of the expert knowledge settings,which indicates the interpretability of the BRB-i model.Experimental results show that,compared with other methods,the BRB-i model guarantees the model’s interpretability and the high precision of experimental results. 展开更多
关键词 Liquid launch vehicle belief rule base with interpretability belief rule base whale optimization algorithm vibration frequency swaying angle
下载PDF
A Semantic Retrieval Method Based on the Fuzzy Reasoning 被引量:1
10
作者 Cao Jia-heng,Liu Juan,Peng Min,Shu Feng-di School of Computer,Wuhan University,Wuhan 430072,Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2002年第2期169-173,共5页
This paper gives a semantic fuzzy retrieval method of multimedia object, discusses the principle of fuzzy semantic retrieval technique, presents a fuzzy reasoning mechanism based on the knowledge base, and designs the... This paper gives a semantic fuzzy retrieval method of multimedia object, discusses the principle of fuzzy semantic retrieval technique, presents a fuzzy reasoning mechanism based on the knowledge base, and designs the relevant reasoning algorithms. Researchful results have innovative significance. 展开更多
关键词 Key words semantic retrieval fuzzy reasoning knowledge base multimedia object
下载PDF
Case-Based Reasoning for Reducing Software Development Effort 被引量:1
11
作者 Adam Brady Tim Menzies +2 位作者 Oussama El-Rawas Ekrem Kocaguneli Jacky W. Keung 《Journal of Software Engineering and Applications》 2010年第11期1005-1014,共10页
How can we best find project changes that most improve project estimates? Prior solutions to this problem required the use of standard software process models that may not be relevant to some new project. Also, those ... How can we best find project changes that most improve project estimates? Prior solutions to this problem required the use of standard software process models that may not be relevant to some new project. Also, those prior solutions suffered from limited verification (the only way to assess the results of those studies was to run the recommendations back through the standard process models). Combining case-based reasoning and contrast set learning, the W system requires no underlying model. Hence, it is widely applicable (since there is no need for data to conform to some software process models). Also, W’s results can be verified (using holdout sets). For example, in the experiments reported here, W found changes to projects that greatly reduced estimate median and variance by up to 95% and 83% (respectively). 展开更多
关键词 SOFTWARE EFFORT ESTIMATION Case based reasoning EFFORT ESTIMATION
下载PDF
Design System of the Two-step Gear Reducer on Case-based Reasoning 被引量:6
12
作者 JI Aimin HUANG Quansheng +1 位作者 XU Huanmin CHEN Zhengming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期671-679,共9页
The design of the two-step gear reducer is a tedious and time-consuming process. For the purpose of improving the efficiency and intelligence of design process, case-based reasoning(CBR) technology was applied to th... The design of the two-step gear reducer is a tedious and time-consuming process. For the purpose of improving the efficiency and intelligence of design process, case-based reasoning(CBR) technology was applied to the design of the two-step gear reducer. Firstly, the current design method for the two-step gear reducer was analyzed and the principle of CBR was described. Secondly, according to the characteristics of the reducer, three key technologies of CBR were studied and the corresponding methods were provided, which are as follows: (a) an object-oriented knowledge representation method, (b) a retrieval method combining the nearest neighbor with the induction indexing, and (c) a case adaptation algorithm combining the revision based on rule with artificial revision. Also, for the purpose of improving the credibility of case retrieval, a new method for determining the weights of characteristics and a similarity formula were presented, which is a combinatorial weighting method with the analytic hierarchy process(AHP) and roughness set theory. Lastly, according to the above analytic results, a design system of the two-step gear reducer on CBR was developed by VC++, UG and Access 2003. A new method for the design of the two-step gear reducer is provided in this study. If the foregoing developed system is applied to design the two-step gear reducer, design efficiency is improved, which enables the designer to release from the tedious design process of the gear reducer so as to put more efforts on innovative design. The study result fully reflects the feasibility and validity of CBR technology in the process of the design of the mechanical parts. 展开更多
关键词 two-step gear reducer case-based reasoning(CBR) weights of characteristics SIMILARITY
下载PDF
Endpoint temperature prediction of molten steel in RH using improved case-based reasoning 被引量:3
13
作者 Kai Feng Hong-bing Wang +1 位作者 An-jun Xu Dong-feng He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第12期1148-1154,共7页
An improved case-based reasoning (CBR) method was proposed to predict the endpoint temperature of molten steel in Ruhrstahl Heraeus (RH) process. Firstly, production data were analyzed by multiple linear regressio... An improved case-based reasoning (CBR) method was proposed to predict the endpoint temperature of molten steel in Ruhrstahl Heraeus (RH) process. Firstly, production data were analyzed by multiple linear regressions and a pairwise comparison matrix in analytic hierarchy process (AHP) was determined by this linear regression's coefficient. The weights of various influencing factors were obtained by AHP. Secondly, the dividable principles of case base including "0-1" and "breakpoint" were proposed, and the case base was divided into several homogeneous parts. Finally, the improved CBR was compared with ordinary CBR, which is based on the even weight and the single base. The results show that the improved CBR has a higher hit rate for predicting the endpoint temperature of molten steel in RH. 展开更多
关键词 STEELMAKING DEGASSING case-based reasoning analytic hierarchy process TEMPERATURE prediction
下载PDF
Case Based Reasoning Intelligent System for Network Computer Aided Process Planning
14
作者 ZHAO Chunhua WU Zhengjia ZHOU Chengjun ZHU Dalin LI Haoping School of Mechanical and Material,China Three Gorges University,Yichang 443002,China, 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S3期1077-1080,共4页
Computer aided process planning system played a key role for integrating design and manufacturing or assembly systems properly considering available resources and design constraints.To take advantage of the enterprise... Computer aided process planning system played a key role for integrating design and manufacturing or assembly systems properly considering available resources and design constraints.To take advantage of the enterprise resource,the web CAPP framework was established.Case based reasoning and multi agent system were integrated in the system.The multi agent mecha- nism was discussed in the paper.And an instance of case base was introduced.They made the system run independently and contin- uously in the network environment of process planning problems. 展开更多
关键词 COMPUTER aided process PLANNING multi AGENT system CASE based reasoning
下载PDF
Case-Based Reasoning for Slope Stability Evaluation and Its Application 被引量:1
15
作者 刘沐宇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2001年第4期62-65,共4页
Slope is a non-linear and uncertain kinetic system affected by many factors. In view of the incompleteness and uncertainty of the information of slope stability evaluation, a new method of slop stability evaluation by... Slope is a non-linear and uncertain kinetic system affected by many factors. In view of the incompleteness and uncertainty of the information of slope stability evaluation, a new method of slop stability evaluation by using case-based reasoning is presented. Considering the sensitivity of attribute weights to the environment, the algorithm of attribute weights is set up on the basis of the concept of changeable weights. Calculating the similarity between target case of the slope and base case, the stability of target case is evaluated. It is shown from examples that the method is simple, visual, practical, and convenient for use. 展开更多
关键词 case-based reasoning SLOPE slope stability comprehensive evaluation
下载PDF
HYBRID STRATIFIED ATMS AND ANN FOR CASE-BASED REASONING
16
作者 杨杰 黄欣 陆正刚 《Journal of Shanghai Jiaotong university(Science)》 EI 1999年第1期18-23,共6页
Case Based Reasoning (CBR) is a powerful problem solving technique in AI, but the traditional CBR techniques have its limitations. We hybridized stratified ATMS and ANN for CBR which can deal with case representation... Case Based Reasoning (CBR) is a powerful problem solving technique in AI, but the traditional CBR techniques have its limitations. We hybridized stratified ATMS and ANN for CBR which can deal with case representation, case retrieving, case adapting, learning from failure more effectively. The structure of our CBR system and algorithms of case base reasoning in our CBR system were presented. 展开更多
关键词 case based reasoning (CBR) STRATIFIED assumption based TRUTH maintenance system (ATMS) artificial neural network (ANN)
下载PDF
A New Action-Based Reasoning Approach for Playing Chess
17
作者 Norhan Hesham Osama Abu-Elnasr Samir Elmougy 《Computers, Materials & Continua》 SCIE EI 2021年第10期175-190,共16页
Many previous research studies have demonstrated game strategies enabling virtual players to play and take actions mimicking humans.The CaseBased Reasoning(CBR)strategy tries to simulate human thinking regarding solvi... Many previous research studies have demonstrated game strategies enabling virtual players to play and take actions mimicking humans.The CaseBased Reasoning(CBR)strategy tries to simulate human thinking regarding solving problems based on constructed knowledge.This paper suggests a new Action-Based Reasoning(ABR)strategy for a chess engine.This strategy mimics human experts’approaches when playing chess,with the help of the CBR phases.This proposed engine consists of the following processes.Firstly,an action library compiled by parsing many grandmasters’cases with their actions from different games is built.Secondly,this library reduces the search space by using two filtration steps based on the defined action-based and encoding-based similarity schemes.Thirdly,the minimax search tree is fed with a list extracted from the filtering stage using the alpha-beta algorithm to prune the search.The proposed evaluation function estimates the retrievably reactive moves.Finally,the best move will be selected,played on the board,and stored in the action library for future use.Many experiments were conducted to evaluate the performance of the proposed engine.Moreover,the engine played 200 games against Rybka 2.3.2a scoring 2500,2300,2100,and 1900 rating points.Moreover,they used the Bayeselo tool to estimate these rating points of the engine.The results illustrated that the proposed approach achieved high rating points,reaching as high as 2483 points. 展开更多
关键词 Action based reasoning case-based reasoning chess engine computer games search algorithm
下载PDF
Case-Based Reasoning(CBR) Model for Ultra-Fast Cooling in Plate Mill 被引量:1
18
作者 HU Xiao WANG Zhaodong WANG Guodong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1264-1271,共8页
New generation thermo-mechanical control process(TMCP) based on ultra-fast cooling is being widely adopted in plate mill to product high-performance steel material at low cost. Ultra-fast cooling system is complex b... New generation thermo-mechanical control process(TMCP) based on ultra-fast cooling is being widely adopted in plate mill to product high-performance steel material at low cost. Ultra-fast cooling system is complex because of optimizing the temperature control error generated by heat transfer mathematical model and process parameters. In order to simplify the system and improve the temperature control precision in ultra-fast cooling process, several existing models of case-based reasoning(CBR) model are reviewed. Combining with ultra-fast cooling process, a developed R5 CBR model is proposed, which mainly improves the case representation, similarity relation and retrieval module. Certainty factor is defined in semantics memory unit of plate case which provides not only internal data reliability but also product performance reliability. Similarity relation is improved by defined power index similarity membership function. Retrieval process is simplified and retrieval efficiency is improved apparently by windmill retrieval algorithm. The proposed CBR model is used for predicting the case of cooling strategy and its capability is superior to traditional process model. In order to perform comprehensive investigations on ultra-fast cooling process, different steel plates are considered for the experiment. The validation experiment and industrial production of proposed CBR model are carried out, which demonstrated that finish cooling temperature(FCT) error is controlled within±25℃ and quality rate of product is more than 97%. The proposed CBR model can simplify ultra-fast cooling system and give quality performance for steel product. 展开更多
关键词 ultra-fast cooling plate mill case-based reasoning case representation similarity relation retrieval module
下载PDF
Temperature Prediction of Aluminum Alloy Work-Pieces in Aging Furnaces Based on Improved Case-Based Reasoning 被引量:1
19
作者 Qi Zhu Ling Shen +1 位作者 Jianjun He Weihua Gui 《International Journal of Nonferrous Metallurgy》 2017年第4期47-59,共13页
The temperature of aluminum alloy work-pieces in the aging furnace directly affects the quality of aluminum alloy products. Since the temperature of aluminum alloy work-pieces cannot be measured directly, a temperatur... The temperature of aluminum alloy work-pieces in the aging furnace directly affects the quality of aluminum alloy products. Since the temperature of aluminum alloy work-pieces cannot be measured directly, a temperature prediction model based on improved case-based reasoning (CBR) method is established to realize the online measurement of the work-pieces temperature. More specifically, the model is constructed by an advanced case-based reasoning method in which a state transition algorithm (STA) is firstly used to optimize the weights of feature attributes. In other words, STA is utilized to find the suitable attribute weights of the CBR model that can improve the accuracy of the case retrieval process. Finally, the CBR model based on STA (STCBR) was applied to predict the temperature of aluminum alloy work-pieces in the aging furnace. The results of the experiments indicated that the developed model can realize high-accuracy prediction of work-pieces temperature and it has good application prospects in the industrial field. 展开更多
关键词 Prediction Model Aluminum Alloy Case-based reasoning State TRANSITION Algorithm AGING FURNACE
下载PDF
Mineral Prospectivity Mapping Method Integrating Multi-Sources Geology Spatial Data Sets and Case-Based Reasoning 被引量:1
20
作者 Binbin He Jianhua Chen +1 位作者 Cuihua Chen Yue Liu 《Journal of Geographic Information System》 2012年第2期77-85,共9页
Extracting and synthesizing information from existing and massive amounts of geology spatial data sets is of great scientific significance and has considerable value in its applications. To make mineral exploration le... Extracting and synthesizing information from existing and massive amounts of geology spatial data sets is of great scientific significance and has considerable value in its applications. To make mineral exploration less expensive, more efficient, and more accurate, it is important to move beyond traditional concepts and establish a rapid, efficient, and intelligent method of predicting the existence and location of minerals. This paper describes a case-based reasoning (CBR) method for mineral prospectivity mapping that takes spatial features of geology data into account and offers an intelligent approach. This method include a metallogenic case representation that combines spatial and attribute features, metallogenic case-based storage organization, and a metallogenic case similarity retrieval model. The experiments were performed in the eastern Kunlun Mountains, China using CBR and weights-of-evidence (WOE), respectively. The results show that the prediction accuracy of the CBR is higher than that of the WOE. 展开更多
关键词 Mineral Prospectivity Mapping Case-based reasoning METALLOGENIC CASE Representation METALLOGENIC CASE Retrieval Eastern KUNLUN MOUNTAINS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部