Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional...Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy.展开更多
The g-good-neighbor connectivity of G is a generalization of the concept of connectivity, which is just for, and an important parameter in measuring the fault tolerance and reliability of interconnection network. Many...The g-good-neighbor connectivity of G is a generalization of the concept of connectivity, which is just for, and an important parameter in measuring the fault tolerance and reliability of interconnection network. Many well-known networks can be constructed by the Cartesian products of some simple graphs. In this paper, we determine the g-good-neighbor connectivity of some Cartesian product graphs. We give the exact value of g-good-neighbor connectivity of the Cartesian product of two complete graphs and for , mesh for , cylindrical grid and torus for .展开更多
Classification of the patterns is a crucial structure of research and applications. Using fuzzy set theory, classifying the patterns has become of great interest because of its ability to understand the parameters. ...Classification of the patterns is a crucial structure of research and applications. Using fuzzy set theory, classifying the patterns has become of great interest because of its ability to understand the parameters. One of the problemsobserved in the fuzzification of an unknown pattern is that importance is givenonly to the known patterns but not to their features. In contrast, features of thepatterns play an essential role when their respective patterns overlap. In this paper,an optimal fuzzy nearest neighbor model has been introduced in which a fuzzifi-cation process has been carried out for the unknown pattern using k nearest neighbor. With the help of the fuzzification process, the membership matrix has beenformed. In this membership matrix, fuzzification has been carried out of the features of the unknown pattern. Classification results are verified on a completelyllabelled Telugu vowel data set, and the accuracy is compared with the differentmodels and the fuzzy k nearest neighbor algorithm. The proposed model gives84.86% accuracy on 50% training data set and 89.35% accuracy on 80% trainingdata set. The proposed classifier learns well enough with a small amount of training data, resulting in an efficient and faster approach.展开更多
The purpose of this paper is to investigate the k-nearest neighbor classification rule for spatially dependent data.Some spatial mixing conditions are considered,and under such spatial structures,the well known k-neare...The purpose of this paper is to investigate the k-nearest neighbor classification rule for spatially dependent data.Some spatial mixing conditions are considered,and under such spatial structures,the well known k-nearest neighbor rule is suggested to classify spatial data.We established consistency and strong consistency of the classifier under mild assumptions.Our main results extend the consistency result in the i.i.d.case to the spatial case.展开更多
基金National Natural Science Foundation of China Nos.61962054 and 62372353.
文摘Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy.
文摘The g-good-neighbor connectivity of G is a generalization of the concept of connectivity, which is just for, and an important parameter in measuring the fault tolerance and reliability of interconnection network. Many well-known networks can be constructed by the Cartesian products of some simple graphs. In this paper, we determine the g-good-neighbor connectivity of some Cartesian product graphs. We give the exact value of g-good-neighbor connectivity of the Cartesian product of two complete graphs and for , mesh for , cylindrical grid and torus for .
基金supported by the Taif University Researchers Supporting Project Number(TURSP-2020/79),Taif University,Taif,Saudi Arabia.
文摘Classification of the patterns is a crucial structure of research and applications. Using fuzzy set theory, classifying the patterns has become of great interest because of its ability to understand the parameters. One of the problemsobserved in the fuzzification of an unknown pattern is that importance is givenonly to the known patterns but not to their features. In contrast, features of thepatterns play an essential role when their respective patterns overlap. In this paper,an optimal fuzzy nearest neighbor model has been introduced in which a fuzzifi-cation process has been carried out for the unknown pattern using k nearest neighbor. With the help of the fuzzification process, the membership matrix has beenformed. In this membership matrix, fuzzification has been carried out of the features of the unknown pattern. Classification results are verified on a completelyllabelled Telugu vowel data set, and the accuracy is compared with the differentmodels and the fuzzy k nearest neighbor algorithm. The proposed model gives84.86% accuracy on 50% training data set and 89.35% accuracy on 80% trainingdata set. The proposed classifier learns well enough with a small amount of training data, resulting in an efficient and faster approach.
文摘The purpose of this paper is to investigate the k-nearest neighbor classification rule for spatially dependent data.Some spatial mixing conditions are considered,and under such spatial structures,the well known k-nearest neighbor rule is suggested to classify spatial data.We established consistency and strong consistency of the classifier under mild assumptions.Our main results extend the consistency result in the i.i.d.case to the spatial case.